scholarly journals Targeting Tat–TAR RNA Interaction for HIV-1 Inhibition

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2004
Author(s):  
Awadh Alanazi ◽  
Andrey Ivanov ◽  
Namita Kumari ◽  
Xionghao Lin ◽  
Songping Wang ◽  
...  

The HIV-1 Tat protein interacts with TAR RNA and recruits CDK9/cyclin T1 and other host factors to induce HIV-1 transcription. Thus, Tat–TAR RNA interaction, which is unique for HIV-1, represents an attractive target for anti-HIV-1 therapeutics. To target Tat–TAR RNA interaction, we used a crystal structure of acetylpromazine bound to the bulge of TAR RNA, to dock compounds from the Enamine database containing over two million individual compounds. The docking procedure identified 173 compounds that were further analyzed for the inhibition of HIV-1 infection. The top ten inhibitory compounds with IC50 ≤ 6 µM were selected and the three least toxic compounds, T6780107 (IC50 = 2.97 μM), T0516-4834 (IC50 = 0.2 μM) and T5628834 (IC50 = 3.46 μM), were further tested for HIV-1 transcription inhibition. Only the T0516-4834 compound showed selective inhibition of Tat-induced HIV-1 transcription, whereas the T6780107 compound inhibited equally basal and Tat-induced transcription and the T5628834 compound only inhibited basal HIV-1 transcription. The compounds were tested for the inhibition of translation and showed minimal (<25%) effect. The T0516-4834 compound also showed the strongest inhibition of HIV-1 RNA expression and p24 production in CEM T cells and peripheral blood mononuclear cells infected with HIV-1 IIIB. Of the three compounds, only the T0516-4834 compound significantly disrupted Tat–TAR RNA interaction. Additionally, of the three tested compounds, T5628834 and, to a lesser extent, T0516-4834 disrupted Tat–CDK9/cyclin T1 interaction. None of the three compounds showed significant inhibition of the cellular CDK9 and cyclin T1 levels. In silico modelling showed that the T0516-4834 compound interacted with TAR RNA by binding to the bulge formed by U23, U25, C39, G26,C39 and U40 residues. Taken together, our study identified a novel benzoxazole compound that disrupted Tat–TAR RNA interaction and inhibited Tat-induced transcription and HIV-1 infection, suggesting that this compound might serve as a new lead for anti-HIV-1 therapeutics.

Author(s):  
Awadh Alanazi ◽  
Andrey Ivanov ◽  
Namita Kumari ◽  
Xionghao Lin ◽  
Songping Wang ◽  
...  

HIV-1 Tat protein interacts with TAR RNA and recruits CDK9/cyclin T1 and other host factors to induce HIV-1 transcription. Thus Tat-TAR RNA interaction, which is unique for HIV-1, represents an attractive target for anti-HIV-1 therapeutics. To target Tat-TAR RNA interaction, we used a crystal structure of TAR RNA with acetylpromazine bound to the bulge of TAR RNA, to dock compounds from Enamine database containing 1.6 million individual compounds. Docking identified 173 compounds that were analyzed for the inhibition of HIV-1 infection. Top ten inhibitory compounds with IC50 ≤ 6 µM were selected and the three least toxic compounds, T6780107 (IC50=2.97 μM), T0516-4834 (IC50=0.2 μM) and T5628834 (IC50=3.46 μM), were further tested for HIV-1 transcription inhibition. Only T0516-4834 compound showed selective inhibition of Tat-induced HIV-1 transcription, whereas T6780107 compound inhibited equally basal and Tat-induced transcription and T5628834 compound only inhibited basal HIV-1 transcription. The T0516-4834 compound also showed strongest inhibition of HIV-1 gag RNA expression and p24 production in CEM T cells infected with HIV-1 IIIB. Of the three compounds, only the T0516-4834 compound disrupted Tat-TAR RNA interaction indicating that it might target TAR RNA. Also, of the three tested compounds, T5628834 but not T6780107 or T0516-4834 disrupted Tat-CDK9/cyclin T1 interaction. Taken together, our study identified novel compound T0516-4834 that disrupted Tat-TAR RNA interaction and inhibited Tat-induced transcription and HIV-1 infection suggesting that this compound might serve as a new lead for anti-HIV-1 therapeutics.


2003 ◽  
Vol 84 (3) ◽  
pp. 603-606 ◽  
Author(s):  
Lars H. Lund ◽  
Britta Wahren ◽  
Mariano A. Garcia-Blanco

Human immunodeficiency virus type 1 (HIV-1) Tat and human Cyclin T1 form a complex and together recognize the viral TAR RNA element with specificity. Using HIV-1/equine infectious anaemia virus TAR chimeras, we show that in addition to the well-characterized interaction with the bulge, Tat recognizes the distal stem and the loop of TAR. These data support previously proposed, but unproven, molecular models.


2000 ◽  
Vol 44 (8) ◽  
pp. 2093-2099 ◽  
Author(s):  
Brett S. Robinson ◽  
Keith A. Riccardi ◽  
Yi-fei Gong ◽  
Qi Guo ◽  
David A. Stock ◽  
...  

ABSTRACT BMS-232632 is an azapeptide human immunodeficiency virus type 1 (HIV-1) protease (Prt) inhibitor that exhibits potent anti-HIV activity with a 50% effective concentration (EC50) of 2.6 to 5.3 nM and an EC90 of 9 to 15 nM in cell culture. Proof-of-principle studies indicate that BMS-232632 blocks the cleavage of viral precursor proteins in HIV-infected cells, proving that it functions as an HIV Prt inhibitor. Comparative studies showed that BMS-232632 is generally more potent than the five currently approved HIV-1 Prt inhibitors. Furthermore, BMS-232632 is highly selective for HIV-1 Prt and exhibits cytotoxicity only at concentrations 6,500- to 23,000-fold higher than that required for anti-HIV activity. To assess the potential of this inhibitor when used in combination with other antiretrovirals, BMS-232632 was evaluated for anti-HIV activity in two-drug combination studies. Combinations of BMS-232632 with either stavudine, didanosine, lamivudine, zidovudine, nelfinavir, indinavir, ritonavir, saquinavir, or amprenavir in HIV-infected peripheral blood mononuclear cells yielded additive to moderately synergistic antiviral effects. Importantly, combinations of drug pairs did not result in antagonistic anti-HIV activity or enhanced cytotoxic effects at the highest concentrations used for antiviral evaluation. Our results suggest that BMS-232632 may be an effective HIV-1 inhibitor that may be utilized in a variety of different drug combinations.


2005 ◽  
Vol 62 (3) ◽  
pp. 355-361 ◽  
Author(s):  
O. Chaloin ◽  
J. -C. Peter ◽  
J. -P. Briand ◽  
B. Masquida ◽  
C. Desgranges ◽  
...  
Keyword(s):  
Tar Rna ◽  

2020 ◽  
Vol 9 (8) ◽  
pp. 2452
Author(s):  
Rubén Ayala-Suárez ◽  
Francisco Díez-Fuertes ◽  
Esther Calonge ◽  
Humberto Erick De La Torre Tarazona ◽  
María Gracia-Ruíz de Alda ◽  
...  

Long-term non-progressors (LTNP) and elite controllers (EC) represent spontaneous natural models of efficient HIV-1 response in the absence of treatment. The main purposes of this work are to describe the miRNome of HIV-1 infected patients with different extreme phenotypes and identify potentially altered pathways regulated by differentially expressed (DE) miRNAs. The miRNomes from peripheral blood mononuclear cells (PBMCs) of dual phenotype EC-LTNP or LTNP with detectable viremia and HIV-infected patients with typical progression before and after treatment, were obtained through miRNA-Seq and compared among them. The administration of treatment produces 18 DE miRNAs in typical progressors. LTNP condition shows 14 DE miRNA when compared to typical progressors, allowing LTNP phenotype differentiation. A set of four miRNAs: miR-144-3p, miR-18a-5p, miR-451a, and miR-324 is strongly downregulated in LTNP and related to protein regulation as AKT, mTOR, ERK or IKK, involved in immune response pathways. Deregulation of 28 miRNA is observed between EC-LTNP and viremic-LTNP, including previously described anti-HIV miRNAs: miR-29a, associated with LTNP phenotype, and miR-155, targeting different pre-integration complexes such as ADAM10 and TNPO3. A holistic perspective of the changes observed in the miRNome of patients with different phenotypes of HIV-control and non-progression is provided.


2013 ◽  
Vol 58 (2) ◽  
pp. 687-697 ◽  
Author(s):  
Ana M. Chamoun-Emanuelli ◽  
Michael Bobardt ◽  
Bernard Moncla ◽  
Marie K. Mankowski ◽  
Roger G. Ptak ◽  
...  

ABSTRACTPD 404,182 (PD) is a synthetic compound that was found to compromise HIV integrity via interaction with a nonenvelope protein viral structural component (A. M. Chamoun et al., Antimicrob. Agents Chemother. 56:672–681, 2012). The present study evaluates the potential of PD as an anti-HIV microbicide and establishes PD's virucidal activity toward another pathogen, herpes simplex virus (HSV). We show that the anti-HIV-1 50% inhibitory concentration (IC50) of PD, when diluted in seminal plasma, is ∼1 μM, similar to the IC50determined in cell culture growth medium, and that PD retains full anti-HIV-1 activity after incubation in cervical fluid at 37°C for at least 24 h. In addition, PD is nontoxic toward vaginal commensalLactobacillusspecies (50% cytotoxic concentration [CC50], >300 μM), freshly activated human peripheral blood mononuclear cells (CC50, ∼200 μM), and primary CD4+T cells, macrophages, and dendritic cells (CC50, >300 μM). PD also exhibited high stability in pH-adjusted Dulbecco's phosphate-buffered saline with little to no activity loss after 8 weeks at pH 4 and 42°C, indicating suitability for formulation for transportation and storage in developing countries. Finally, for the first time, we show that PD inactivates herpes simplex virus 1 (HSV-1) and HSV-2 at submicromolar concentrations. Due to the prevalence of HSV infection, the ability of PD to inactivate HSV may provide an additional incentive for use as a microbicide. The ability of PD to inactivate both HIV-1 and HSV, combined with its low toxicity and high stability, warrants additional studies for the evaluation of PD's microbicidal candidacy in animals and humans.


2005 ◽  
Vol 49 (8) ◽  
pp. 3474-3482 ◽  
Author(s):  
Katsunori Takashima ◽  
Hiroshi Miyake ◽  
Naoyuki Kanzaki ◽  
Yoshihiko Tagawa ◽  
Xin Wang ◽  
...  

ABSTRACT TAK-220 is a member of a novel class of chemokine receptor antagonists and is highly specific to CCR5, as determined by receptor binding and calcium mobilization assays. The compound selectively inhibited coreceptor-mediated entry of human immunodeficiency virus type 1 (HIV-1) into host cells and HIV-1 infection mediated by CCR5. TAK-220 inhibited the replication of six CCR5-using (R5) HIV-1 clinical isolates in peripheral blood mononuclear cells (PBMCs) with a mean 90% effective concentration of 13 nM. The anti-HIV-1 activity of TAK-220 was not affected by addition of high concentrations of human serum. It equally inhibited R5 HIV-1 replication in PBMCs obtained from eight different donors, irrespective of the levels of viral production. Furthermore, the anti-HIV-1 activity of TAK-220 was found to be subtype independent. TAK-220 did not induce CCR5 internalization but blocked the binding of two monoclonal antibodies that recognize the second extracellular loop of CCR5 in CCR5-expressing cells. These results suggest that TAK-220 selectively inhibits R5 HIV-1 replication by interfering with coreceptor-mediated entry of the virus into host cells. At a dose of 5 mg/kg of body weight, TAK-220 showed oral bioavailabilities of 9.5 and 28.9% in rats and monkeys, respectively. Thus, TAK-220 is a promising candidate for the treatment of HIV-1 infection.


2012 ◽  
Vol 86 (16) ◽  
pp. 8472-8481 ◽  
Author(s):  
Sandhya Kortagere ◽  
Navid Madani ◽  
Marie K. Mankowski ◽  
Arne Schön ◽  
Isaac Zentner ◽  
...  

The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4′-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity.


Sign in / Sign up

Export Citation Format

Share Document