scholarly journals Composition of Eukaryotic Viruses and Bacteriophages in Individuals with Acute Gastroenteritis

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2365
Author(s):  
Endrya do Socorro Fôro Ramos ◽  
Geovani de Oliveira Ribeiro ◽  
Fabiola Villanova ◽  
Flávio Augusto de Padua Milagres ◽  
Rafael Brustulin ◽  
...  

Metagenomics based on the next-generation sequencing (NGS) technique is a target-independent assay that enables the simultaneous detection and genomic characterization of all viruses present in a sample. There is a limited amount of data about the virome of individuals with gastroenteritis (GI). In this study, the enteric virome of 250 individuals (92% were children under 5 years old) with GI living in the northeastern and northern regions of Brazil was characterized. Fecal samples were subjected to NGS, and the metagenomic analysis of virus-like particles (VLPs) identified 11 viral DNA families and 12 viral RNA families. As expected, the highest percentage of viral sequences detected were those commonly associated with GI, including rotavirus, adenovirus, norovirus (94.8%, 82% and 71.2%, respectively). The most common co-occurrences, in a single individual, were the combinations of rotavirus-adenovirus, rotavirus-norovirus, and norovirus-adenovirus (78%, 69%, and 62%, respectively). In the same way, common fecal-emerging human viruses were also detected, such as parechovirus, bocaporvirus, cosavirus, picobirnavirus, cardiovirus, salivirus, and Aichivirus. In addition, viruses that infect plants, nematodes, fungi, protists, animals, and arthropods could be identified. A large number of unclassified viral contigs were also identified. We show that the metagenomics approach is a powerful and promising tool for the detection and characterization of different viruses in clinical GI samples.

2005 ◽  
Vol 79 (5) ◽  
pp. 3028-3037 ◽  
Author(s):  
Walter Maccheroni ◽  
Marcos C. Alegria ◽  
Christian C. Greggio ◽  
João Paulo Piazza ◽  
Rachel F. Kamla ◽  
...  

ABSTRACT Citrus sudden death (CSD) is a new disease that has killed approximately 1 million orange trees in Brazil. Here we report the identification of a new virus associated with the disease. RNAs isolated from CSD-affected and nonaffected trees were used to construct cDNA libraries. A set of viral sequences present exclusively in libraries of CSD-affected trees was used to obtain the complete genome sequence of the new virus. Phylogenetic analysis revealed that this virus is a new member of the genus Marafivirus. Antibodies raised against the putative viral coat proteins allowed detection of viral antigens of expected sizes in affected plants. Electron microscopy of purified virus confirmed the presence of typical isometric Marafivirus particles. The screening of 773 affected and nonaffected citrus trees for the presence of the virus showed a 99.7% correlation between disease symptoms and the presence of the virus. We also detected the virus in aphids feeding on affected trees. These results suggest that this virus is likely to be the causative agent of CSD. The virus was named Citrus sudden death-associated virus.


2014 ◽  
Vol 8 (04) ◽  
pp. 498-509 ◽  
Author(s):  
Zhen Lin ◽  
Amber Farooqui ◽  
Guishuang Li ◽  
Gane KS Wong ◽  
Andrew L Mason ◽  
...  

Introduction: Conventional methods used to detect and characterize influenza viruses in biological samples face multiple challenges due to the diversity of subtypes and high dissimilarity of emerging strains. Next-generation sequencing (NGS) is a powerful technique that can facilitate the detection and characterization of influenza, however, the sequencing strategy and the procedures of data analysis possess different aspects that require careful consideration. Methodology: The RNA from the lungs of ferrets infected with influenza A/California/07/2009 was analyzed by next-generation sequencing (NGS) without using specific PCR amplification of the viral sequences. Several bioinformatic approaches were used to resolve the viral genes and detect viral quasispecies. Results: The genomic sequences of influenza virus were characterized to a high level of detail when analyzing the short-reads with either the fast aligner Bowtie2, the general purpose aligner BLASTn or de novo assembly with Abyss. Moreover, when using distant viral sequences as reference, these methods were still able to resolve the viral sequences of a biological sample. Finally, direct sequencing of RNA samples did not provide sufficient coverage of the viral genome to study viral quasispecies, and, therefore, prior amplification of the viral segments by PCR would be required to perform this type of analysis. Conclusions: the introduction of NGS for virus research allows routine full characterization of viral isolates; however, careful design of the sequencing strategy and the procedures for data analysis are still of critical importance.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 5010-5010 ◽  
Author(s):  
Michael L. Cheng ◽  
Wassim Abida ◽  
Dana E. Rathkopf ◽  
Maria E. Arcila ◽  
David Barron ◽  
...  

5010 Background: With the goal of accelerating enrollment onto appropriate clinical trials, we performed prospective genomic characterization of pts with advanced prostate cancer. Given the long natural history and osseous disease predominance, we also analyzed plasma cfDNA to assess the feasibility of identifying targetable alterations in pts for whom adequate tumor tissue was unavailable. Methods: 1038 tumors from 896 pts along with matched normal DNA were analyzed with a capture-based NGS assay (MSK-IMPACT) targeting 341–468 genes. In 5/2015, the protocol was amended to allow pts to opt-in for a formal germline analysis of 76 genes associated with heritable cancer risk. In select pts, plasma cfDNA was collected and analyzed using the same assay. Results: Between 2/2014 and 2/2017, 576 primary tumors and 462 metastases were sequenced. The most notable finding was the high frequency of known or likely pathogenic germline and somatic mutations in genes that regulate DNA damage response (DDR). In the subset with both tumor and germline analysis, 28.84% (169/586) had a DDR mutation identified compared to only 10.65% (33/310) of pts with somatic only analysis. In the subset with tumor and germline analysis, 9.39% (55/586) had somatic only DDR mutations and 16.38% (96/586) had germline only DDR mutations, including 8 pts with two germline mutations. 3.07% (18/586) had co-occurring somatic and germline DDR mutations, with only 0.68% (4/586) involving the same DDR gene (all BRCA2). Prostate cancer had the highest tissue failure rate among the overall MSK-IMPACT solid tumor cohort, and bone biopsy-derived tissue was successfully sequenced in only 42% of pts. Profiling of cfDNA did identify somatic DDR or AR mutations in 12.5% (4/32) of pts without adequate tumor for analysis. Conclusions: This prospective genomic profiling effort identified frequent somatic and germline DDR mutations that may guide PARPi or platinum therapy. Both somatic and germline analyses were required to identify all pts with likely pathogenic DDR alterations. NGS-based cfDNA analysis is feasible in advanced prostate cancer and may identify mutations missed by tumor only sequencing.


Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
AS Lima ◽  
B Lukas ◽  
J Novak ◽  
AC Figueiredo ◽  
LG Pedro ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 490-500 ◽  
Author(s):  
Justin S. Becker ◽  
Amir T. Fathi

The genomic characterization of acute myeloid leukemia (AML) by DNA sequencing has illuminated subclasses of the disease, with distinct driver mutations, that might be responsive to targeted therapies. Approximately 15-23% of AML genomes harbor mutations in one of two isoforms of isocitrate dehydrogenase (IDH1 or IDH2). These enzymes are constitutive mediators of basic cellular metabolism, but their mutated forms in cancer synthesize an abnormal metabolite, 2- hydroxyglutarate, that in turn acts as a competitive inhibitor of multiple gene regulatory enzymes. As a result, leukemic IDH mutations cause changes in genome structure and gene activity, culminating in an arrest of normal myeloid differentiation. These discoveries have motivated the development of a new class of selective small molecules with the ability to inhibit the mutant IDH enzymes while sparing normal cellular metabolism. These agents have shown promising anti-leukemic activity in animal models and early clinical trials, and are now entering Phase 3 study. This review will focus on the growing preclinical and clinical data evaluating IDH inhibitors for the treatment of IDH-mutated AML. These data suggest that inducing cellular differentiation is central to the mechanism of clinical efficacy for IDH inhibitors, while also mediating toxicity for patients who experience IDH Differentiation Syndrome. Ongoing trials are studying the efficacy of IDH inhibitors in combination with other AML therapies, both to evaluate potential synergistic combinations as well as to identify the appropriate place for IDH inhibitors within existing standard-of-care regimens.


Sign in / Sign up

Export Citation Format

Share Document