scholarly journals Characterization of Host Cell Potential Proteins Interacting with OsHV-1 Membrane Proteins

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2518
Author(s):  
Jiangnan Yu ◽  
Ying Liu ◽  
Bowen Huang ◽  
Chen Li ◽  
Dandan Wang ◽  
...  

The interaction between viral membrane associate proteins and host cellular surface molecules should facilitate the attachment and entry of OsHV-1 into host cells. Thus, blocking the putative membrane proteins ORF25 and ORF72 of OsHV-1 with antibodies that have previously been reported to subdue OsHV-1 replication in host cells, especially ORF25. In this study, prey proteins in host hemocytes were screened by pull-down assay with recombinant baits ORF25 and ORF72, respectively. Gene Ontology (GO) analysis of these prey proteins revealed that most of them were mainly associated with binding, structural molecule activity and transport activity in the molecular function category. The protein–protein interaction (PPI) network of the prey proteins was constructed by STRING and clustered via K-means. For both ORF25 and ORF72, three clusters of these prey proteins were distinguished that were mainly associated with cytoskeleton assembly, energy metabolism and nucleic acid processing. ORF25 tended to function in synergy with actins, while ORF72 functioned mainly with tubulins. The above results suggest that these two putative membrane proteins, ORF25 and ORF72, might serve a role in the transport of viral particles with the aid of a cytoskeleton inside cells.

2019 ◽  
Author(s):  
Fen Yu ◽  
Zheng Zhang ◽  
Yuanqiang Zou ◽  
Ye Qiu ◽  
Aiping Wu ◽  
...  

AbstractMotivationReceptors on host cells play a critical role in viral infection. How phages select receptors is still unknown.ResultsHere, we manually curated a high-quality database named phageReceptor, including 355 pairs of phage-host receptor interactions, 280 unique viral species or sub-species and 64 bacterial species. Sugars and proteins were most widely used by phages as receptors. The receptor usage of phages in Gram-positive bacteria was different from that in Gram-negative bacteria. Most protein receptors were located on the outer membrane. The protein receptors were highly diverse in their structures, and had little homology with mammalian virus receptors. Further functional characterization of phage protein receptors in Escherichia coli showed that they had larger node degrees and betweennesses in the protein-protein interaction (PPI) network, and higher expression levels, than other outer membrane proteins, plasma membrane proteins, or other intracellular proteins. These findings were consistent with what observed for mammalian virus receptors, suggesting that viral protein receptors play a central role in the host’s PPI network. The study deepens our understanding of virus-host interactions.AvailabilityThe database of phageReceptor is publicly accessible at http://www.computationalbiology.cn/viralRecepetor/index.html.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Bernardo A. Mainou ◽  
Paula F. Zamora ◽  
Alison W. Ashbrook ◽  
Daniel C. Dorset ◽  
Kwang S. Kim ◽  
...  

ABSTRACTMammalian reovirus binds to cell-surface glycans and junctional adhesion molecule A and enters cells by receptor-mediated endocytosis in a process dependent on β1 integrin. Within the endocytic compartment, reovirus undergoes stepwise disassembly, allowing release of the transcriptionally active viral core into the cytoplasm. To identify cellular mediators of reovirus infectivity, we screened a library of small-molecule inhibitors for the capacity to block virus-induced cytotoxicity. In this screen, reovirus-induced cell killing was dampened by several compounds known to impair microtubule dynamics. Microtubule inhibitors were assessed for blockade of various stages of the reovirus life cycle. While these drugs did not alter reovirus cell attachment or internalization, microtubule inhibitors diminished viral disassembly kinetics with a concomitant decrease in infectivity. Reovirus virions colocalize with microtubules and microtubule motor dynein 1 during cell entry, and depolymerization of microtubules results in intracellular aggregation of viral particles. These data indicate that functional microtubules are required for proper sorting of reovirus virions following internalization and point to a new drug target for pathogens that use the endocytic pathway to invade host cells.IMPORTANCEScreening libraries of well-characterized drugs for antiviral activity enables the rapid characterization of host processes required for viral infectivity and provides new therapeutic applications for established pharmaceuticals. Our finding that microtubule-inhibiting drugs impair reovirus infection identifies a new cell-based antiviral target.


Author(s):  
H.M. Mazzone ◽  
W.F. Engler ◽  
G. Wray ◽  
A. Szirmae ◽  
J. Conroy ◽  
...  

Viral inclusion bodies isolated from infected pest insects are being evaluated by the U.S. Dept. of Agriculture as biological insecticides against their hosts. Our research on these inclusion bodies constitutes part of an effort to support their approval by the Environmental Protection Agency as insect control agents. The inclusion bodies in this study are polyhedral in shape and contain rod-shaped viral particles. When ingested by pest insects, the inclusion bodies are broken down in the insect gut and release the viral particles which infect and multiply in the nuclei of host cells. These viruses are termed nucleopolyhedrosis viruses (NPV) and are representatives of the baculoviruses (Wildy, P. 1971 IN J.L. Melnick, ed., Monographs in Virology, vol. 5, S.Karger, New York).


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1320
Author(s):  
Yogesh B Narkhede ◽  
Karen J Gonzalez ◽  
Eva-Maria Strauch

The emergence of novel viral infections of zoonotic origin and mutations of existing human pathogenic viruses represent a serious concern for public health. It warrants the establishment of better interventions and protective therapies to combat the virus and prevent its spread. Surface glycoproteins catalyzing the fusion of viral particles and host cells have proven to be an excellent target for antivirals as well as vaccines. This review focuses on recent advances for computational structure-based design of antivirals and vaccines targeting viral fusion machinery to control seasonal and emerging respiratory viruses.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1086
Author(s):  
Francois Helle ◽  
Lynda Handala ◽  
Marine Bentz ◽  
Gilles Duverlie ◽  
Etienne Brochot

Extracellular vesicles have recently emerged as a novel mode of viral transmission exploited by naked viruses to exit host cells through a nonlytic pathway. Extracellular vesicles can allow multiple viral particles to collectively traffic in and out of cells, thus enhancing the viral fitness and diversifying the transmission routes while evading the immune system. This has been shown for several RNA viruses that belong to the Picornaviridae, Hepeviridae, Reoviridae, and Caliciviridae families; however, recent studies also demonstrated that the BK and JC viruses, two DNA viruses that belong to the Polyomaviridae family, use a similar strategy. In this review, we provide an update on recent advances in understanding the mechanisms used by naked viruses to hijack extracellular vesicles, and we discuss the implications for the biology of polyomaviruses.


Sign in / Sign up

Export Citation Format

Share Document