scholarly journals MyD88 Mediates Colitis- and RANKL-Induced Microfold Cell Differentiation

2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Yang Li ◽  
Shanshan Yang ◽  
Xin Huang ◽  
Ning Yang ◽  
Caiying Wang ◽  
...  

Intestinal microfold (M) cells are critical for sampling antigens in the gut and initiating the intestinal mucosal immune response. In this study, we found that the oral administration of dextran sulfate sodium (DSS) and Salmonella infection induced colitis. In the process, the expression levels of M cell differentiation-related genes were synchronized with the kinetics of pro-inflammatory cytokines. Compared to wild-type (WT) mice, MyD88−/− mice exhibited significantly lower expression levels of M cell differentiation-related genes. However, DSS induced colitis in MyD88−/− mice but failed to promote the transcription of M cell differentiation related genes. Furthermore, the receptor activator of the Nuclear Factor-κB ligand (RANKL) upregulated the transcription of M cell differentiation related genes in murine intestinal organoids prepared from both WT and MyD88−/− mice. Meanwhile, fewer changes in M cell differentiation related genes were found in MyD88−/− mice as compared to WT mice. Hence, we concluded that myeloid differentiation factor 88 (MyD88) is an essential molecule for colitis- and RANKL-related differentiation of M cells.

2021 ◽  
Author(s):  
Yang Li ◽  
Shanshan Yang ◽  
Xin Huang ◽  
Ning Yang ◽  
Caiying Wang ◽  
...  

Abstract Intestinal microfold (M) cells are critical for sampling antigen in the gut and initiating the intestinal mucosal immune response. In this study, we found that the differentiation efficiency of M cells was closely related to the colitis severity. The expression levels of M cells differentiation-related genes were synchronized with the kinetics of pro-inflammatory cytokines expression originated from dextran sulfate sodium (DSS) induction and Salmonella infection. Compared with wild-type (WT) mice, MyD88-/- mice exhibited significantly lower expression levels of M cells differentiation-related genes. However, DSS could induce colitis in MyD88-/- mice but failed to promote M cells differentiation. Furthermore, the receptor activator of the Nuclear Factor-κB ligand (RANKL) induced M cells differentiation in murine intestinal organoids prepared from both WT and MyD88-/- mice. However, less M cells differentiation were found in MyD88-/- mice as compared with WT mice. Hence, we concluded that myeloid differentiation factor 88 (MyD88) is an essential molecule for colitis- and RANKL-related M cells differentiation.


2021 ◽  
Author(s):  
Yang Li ◽  
Shanshan Yang ◽  
Xin Huang ◽  
Ning Yang ◽  
Caiying Wang ◽  
...  

Intestinal microfold (M) cells are critical for sampling antigen in the gut and initiating the intestinal mucosal immune response. In this study, we found that the differentiation efficiency of M cells was closely related to the colitis severity. The expression levels of M cells differentiation-related genes were synchronized with the kinetics of pro-inflammatory cytokines expression originated from dextran sulfate sodium (DSS) induction and Salmonella infection. Compared with wild-type (WT) mice, MyD88-/- mice exhibited significantly lower expression levels of M cells differentiation-related genes. However, DSS could induce colitis in MyD88-/- mice but failed to promote M cells differentiation. Furthermore, the receptor activator of the Nuclear Factor-κB ligand (RANKL) induced M cells differentiation in murine intestinal organoids prepared from both WT and MyD88-/- mice. However, less M cells differentiation were found in MyD88-/- mice as compared with WT mice. Hence, we concluded that myeloid differentiation factor 88 (MyD88) is an essential molecule for colitis- and RANKL-related M cells differentiation.


2018 ◽  
Vol 215 (2) ◽  
pp. 501-519 ◽  
Author(s):  
Takashi Kanaya ◽  
Sayuri Sakakibara ◽  
Toshi Jinnohara ◽  
Masami Hachisuka ◽  
Naoko Tachibana ◽  
...  

M cells are located in the follicle-associated epithelium (FAE) that covers Peyer’s patches (PPs) and are responsible for the uptake of intestinal antigens. The differentiation of M cells is initiated by receptor activator of NF-κB. However, the intracellular pathways involved in M cell differentiation are still elusive. In this study, we demonstrate that the NF-κB pathway activated by RANK is essential for M cell differentiation using in vitro organoid culture. Overexpression of NF-κB transcription factors enhances the expression of M cell–associated molecules but is not sufficient to complete M cell differentiation. Furthermore, we evaluated the requirement for tumor necrosis factor receptor–associated factor 6 (TRAF6). Conditional deletion of TRAF6 in the intestinal epithelium causes a complete loss of M cells in PPs, resulting in impaired antigen uptake into PPs. In addition, the expression of FAE-associated genes is almost silenced in TRAF6-deficient mice. This study thus demonstrates the crucial role of TRAF6-mediated NF-κB signaling in the development of M cells and FAE.


2021 ◽  
Author(s):  
Joel Johnson George ◽  
Laura Martin Diaz ◽  
Markus Ojanen ◽  
Keijo Viiri

Intestinal microfold cells (M cells) are a dynamic lineage of epithelial cells that initiate mucosal immunity in the intestine. They are responsible for the uptake and transcytosis of microorganisms, pathogens and other antigens in the gastrointestinal tract. A mature M cell expresses a receptor Gp2 which binds to pathogens and aids in the uptake. Due to the rarity of these cells in the intestine, its development and differentiation remains yet to be fully understood. We recently demonstrated that polycomb repressive complex 2 (PRC2) is an epigenetic regulator of M cell development and 12 novel transcription factors including Atoh8 were revealed to be regulated by the PRC2. Here, we show that Atoh8 acts as a regulator of M cell differentiation; absence of Atoh8 led to a significant increase in the number of Gp2+ mature M cells and other M cell associated markers. Atoh8 null mice showed an increase in transcytosis capacity of luminal antigens. Increase in M cell population has been previously reported to be detrimental to mucosal immunity because some pathogens like orally acquired prions have been able to exploit the transcytosis capacity of M cells to infect the host; mouse with increased population of M cells are also susceptible to Salmonella infections. Our study here demonstrates that the population density of intestinal M-cell in the Peyer's patch is regulated by the PRC2 regulated Atoh8.


2021 ◽  
Vol 12 ◽  
Author(s):  
David S. Donaldson ◽  
Barbara B. Shih ◽  
Neil A. Mabbott

The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired via the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer’s patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer’s patches from aged mice, including key transcription factors known to be essential for M cell differentiation. Conversely, expression of ACE2, the cellular receptor for SARS-Cov-2 virus, was increased in the aged FAE. This raises the possibility that the susceptibility of aged Peyer’s patches to infection with the SARS-Cov-2 virus is increased. Expression of key Paneth cell-related genes was also reduced in the ileum of aged mice, consistent with the adverse effects of aging on their function. However, the increased expression of these genes in the villous epithelium of aged mice suggested a disturbed distribution of Paneth cells in the aged intestine. Aging effects on Paneth cells negatively impact on the regenerative ability of the gut epithelium and could indirectly impede M cell differentiation. Thus, restoring Paneth cell function may represent a novel means to improve M cell differentiation in the aging intestine and increase mucosal vaccination efficacy in the elderly.


2021 ◽  
Vol 22 (17) ◽  
pp. 9355
Author(s):  
Joel Johnson George ◽  
Laura Martin-Diaz ◽  
Markus J. T. Ojanen ◽  
Rosa Gasa ◽  
Marko Pesu ◽  
...  

Intestinal microfold cells (M cells) are a dynamic lineage of epithelial cells that initiate mucosal immunity in the intestine. They are responsible for the uptake and transcytosis of microorganisms, pathogens, and other antigens in the gastrointestinal tract. A mature M cell expresses a receptor Gp2 which binds to pathogens and aids in the uptake. Due to the rarity of these cells in the intestine, their development and differentiation remain yet to be fully understood. We recently demonstrated that polycomb repressive complex 2 (PRC2) is an epigenetic regulator of M cell development, and 12 novel transcription factors including Atoh8 were revealed to be regulated by the PRC2. Here, we show that Atoh8 acts as a regulator of M cell differentiation; the absence of Atoh8 led to a significant increase in the number of Gp2+ mature M cells and other M cell-associated markers such as Spi-B and Sox8. In vitro organoid analysis of RankL treated organoid showed an increase of mature marker GP2 expression and other M cell-associated markers. Atoh8 null mice showed an increase in transcytosis capacity of luminal antigens. An increase in M cell population has been previously reported to be detrimental to mucosal immunity because some pathogens like orally acquired prions have been able to exploit the transcytosis capacity of M cells to infect the host; mice with an increased population of M cells are also susceptible to Salmonella infections. Our study here demonstrates that PRC2 regulated Atoh8 is one of the factors that regulate the population density of intestinal M cell in the Peyer’s patch.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuki Oya ◽  
Shunsuke Kimura ◽  
Yutaka Nakamura ◽  
Narumi Ishihara ◽  
Shunsuke Takano ◽  
...  

The ocular mucosal tissues are exposed to potentially harmful foreign antigens in the air and tear fluid. The tear duct-associated lymphoid tissue (TALT) may contribute to immune surveillance in the eye region. Follicle-associated epithelium (FAE) of TALTs is classified as stratified squamous epithelium and consists of squamous epithelial cells arranged in layers on the basement membrane. In contrast, most mucosa-associated lymphoid tissue is covered by a monolayer of epithelium containing microfold (M) cells. Therefore, antigen uptake and the presence of M cells in TALT are not fully understood. The present study found that a small population of FAE cells in the TALT expressed intestinal M-cell markers, namely Sox8, Tnfaip2, GP2, and OPG. This cell population was identified as functional M cells because of their uptake capacity of luminal nanoparticles. In addition, RANKL, which is essential for M-cell differentiation, was expressed by stroma-like cells at the subepithelial region and its receptor RANK by the FAE in the TALT. The administration of RANKL markedly increased the number of Sox8+ M cells. In contrast, deficiency in OPG, an endogenous inhibitor of RANKL, increased the number of M cells in the TALT. These data demonstrate that the RANKL-RANK axis is essential for M-cell differentiation in the TALT. Furthermore, immunization via eye drops elicited the production of antigen-specific antibodies in tears, which was enhanced by RANKL administration. Thus, TALT M cells play an important role in the immunosurveillance of the eye region.


2004 ◽  
Vol 200 (5) ◽  
pp. 601-611 ◽  
Author(s):  
Nobuaki Sato ◽  
Naoyuki Takahashi ◽  
Koji Suda ◽  
Midori Nakamura ◽  
Mariko Yamaki ◽  
...  

Myeloid differentiation factor 88 (MyD88) plays essential roles in the signaling of the Toll/interleukin (IL)-1 receptor family. Toll–IL-1 receptor domain-containing adaptor inducing interferon-β (TRIF)-mediated signals are involved in lipopolysaccharide (LPS)-induced MyD88-independent pathways. Using MyD88-deficient (MyD88−/−) mice and TRIF-deficient (TRIF−/−) mice, we examined roles of MyD88 and TRIF in osteoclast differentiation and function. LPS, diacyl lipopeptide, and IL-1α stimulated osteoclastogenesis in cocultures of osteoblasts and hemopoietic cells obtained from TRIF−/− mice, but not MyD88−/− mice. These factors stimulated receptor activator of nuclear factor-κB ligand mRNA expression in TRIF−/− osteoblasts, but not MyD88−/− osteoblasts. LPS stimulated IL-6 production in TRIF−/− osteoblasts, but not TRIF−/− macrophages. LPS and IL-1α enhanced the survival of TRIF−/− osteoclasts, but not MyD88−/− osteoclasts. Diacyl lipopeptide did not support the survival of osteoclasts because of the lack of Toll-like receptor (TLR)6 in osteoclasts. Macrophages expressed both TRIF and TRIF-related adaptor molecule (TRAM) mRNA, whereas osteoblasts and osteoclasts expressed only TRIF mRNA. Bone histomorphometry showed that MyD88−/− mice exhibited osteopenia with reduced bone resorption and formation. These results suggest that the MyD88-mediated signal is essential for the osteoclastogenesis and function induced by IL-1 and TLR ligands, and that MyD88 is physiologically involved in bone turnover.


2016 ◽  
Vol 311 (3) ◽  
pp. C498-C507 ◽  
Author(s):  
Megan B. Wood ◽  
Daniel Rios ◽  
Ifor R. Williams

Microfold (M) cells are phagocytic intestinal epithelial cells in the follicle-associated epithelium of Peyer's patches that transport particulate antigens from the gut lumen into the subepithelial dome. Differentiation of M cells from epithelial stem cells in intestinal crypts requires the cytokine receptor activator of NF-κB ligand (RANKL) and the transcription factor Spi-B. We used three-dimensional enteroid cultures established with small intestinal crypts from mice as a model system to investigate signaling pathways involved in M cell differentiation and the influence of other cytokines on RANKL-induced M cell differentiation. Addition of RANKL to enteroids induced expression of multiple M cell-associated genes, including Spib, Ccl9 [chemokine (C-C motif) ligand 9], Tnfaip2 (TNF-α-induced protein 2), Anxa5 (annexin A5), and Marcksl1 (myristoylated alanine-rich protein kinase C substrate) in 1 day. The mature M cell marker glycoprotein 2 ( Gp2) was strongly induced by 3 days and expressed by 11% of cells in enteroids. The noncanonical NF-κB pathway was required for RANKL-induced M cell differentiation in enteroids, as addition of RANKL to enteroids from mice with a null mutation in the mitogen-activated protein kinase kinase kinase 14 ( Map3k14) gene encoding NF-κB-inducing kinase failed to induce M cell-associated genes. While the cytokine TNF-α alone had little, if any, effect on expression of M cell-associated genes, addition of TNF-α to RANKL consistently resulted in three- to sixfold higher levels of multiple M cell-associated genes than RANKL alone. One contributing mechanism is the rapid induction by TNF-α of Relb and Nfkb2 (NF-κB subunit 2), genes encoding the two subunits of the noncanonical NF-κB heterodimer. We conclude that endogenous activators of canonical NF-κB signaling present in the gut-associated lymphoid tissue microenvironment, including TNF-α, can play a supportive role in the RANKL-dependent differentiation of M cells in the follicle-associated epithelium.


Sign in / Sign up

Export Citation Format

Share Document