scholarly journals Effect of Incident Acoustic Pressure Amplitude on the Transmission Loss of Helmholtz Resonators

Vibration ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 34-41
Author(s):  
Karim Sachedina ◽  
Thomas Lato ◽  
Atef Mohany ◽  
Marwan Hassan

Acoustic transmission loss is a common parameter utilized throughout several studies to evaluate the acoustic characteristics of a given test element. Transmission loss has been frequently referred to as a source independent parameter. However, this work presents evidence that the incident acoustic pressure amplitude does, in fact, have an effect on the measured transmission loss for some passive damping devices. The transmission loss was experimentally measured utilizing the two-source location method and the specimens tested include an expansion chamber, a quarter wave resonator, a Herschel–Quincke tube and various Helmholtz resonators. When varying the power supplied to the acoustic source, it was noted that all the devices exhibited nearly constant values of transmission loss, with the exception of the Helmholtz resonators. The Helmholtz resonators had a significant variance of transmission loss with respect to the acoustic source power. This decrease in performance is caused by the “jet-flow” phenomenon occurring at the Helmholtz resonator neck, which results in increased acoustic losses. The present work illustrates that the assumption of source independence, which is often made when using transmission loss to evaluate damping devices, must be taken with caution, as this assumption is case dependent and may be crucial when scaling experimental studies to an industrial setting.

2018 ◽  
Vol 7 (3.17) ◽  
pp. 151
Author(s):  
Thiha Zaw ◽  
Aminudin Abu ◽  
Noor Fawazi ◽  
A M. Wahab

Expansion chamber and Helmholtz resonators are widely used in noise control. In this paper, they are combined to use as a hybrid muffler. The analysis is done to investigate the influence of the parameters of Helmholtz resonator on transmission loss. The transfer matrix method is used in the analysis. The result of transmission loss from the transfer matrix method is validated with the result from experimental two-load method using four microphones impedance tube. After had the transmission loss of the hybrid muffler been validated, the study was proceeded to investigate the effects of parameters of Helmholtz resonator on the transmission loss. The root mean square value of transmission loss were also calculated to compare the transmission losses clearly. In this paper, we investigated the effect of length of the neck of Helmholtz resonator, the effect of diameter of the neck of Helmholtz resonator, the effect of the length of the Helmholtz resonator cavity and the effect of the diameter of the Helmholtz resonator cavity for stationary medium. It is found that the transmission loss is increased when the diameter of the neck of Helmholtz resonator is increased. When the length of the neck is reduced, the transmission loss is increased. The transmission loss can also be increased by reducing the diameter of resonator cavity. It is better to increase the transmission loss at low frequencies by increasing the length of the resonator cavity.  


2019 ◽  
Vol 33 (14) ◽  
pp. 1950138
Author(s):  
Myong-Jin Kim

Numerical simulations of the sound transmission loss (STL) of a double-panel structure (DPS) with sonic crystal (SC) comprised of distributed local resonators are presented. The Local Resonant Sonic Crystal (LRSC) consists of “C”-shaped Helmholtz resonator columns with different resonant frequencies. The finite element method is used to calculate the STL of such a DPS. First, the STLs of LRSC in free space and the DPS with LRSC are calculated and compared. It is shown that the sound insulations of the local resonators inserted in the double panel are higher than that in free space for the same size of the SCs and the same number of columns. Next, STL of the DPS in which the SC composed of three columns of local resonators having the same outer and inner diameters but different slot widths are calculated, and a reasonable arrangement order is determined. Finally, the soundproofing performances of DPS with distributed LRSC are compared with the case of insertion of general cylindrical SC for SC embedded in glass wool and not. The results show that the sound insulation of the DPS can be significantly improved in the low frequency range while reducing the total mass without increasing the thickness.


2021 ◽  
Vol 7 (1) ◽  
pp. 270-278
Author(s):  
J. Li ◽  
J. Shan ◽  
Z. Guo ◽  
A. Levtsev

The three-dimensional acoustic finite element method is used to predict the transmission loss of the Helmholtz resonance muffler. The results are in good agreement with the experimental results, indicating the applicability and accuracy of the numerical method used in this paper. On the one hand, in order to reduce the resonance frequency without changing the shape of the resonator, the connecting tube is extended to the inside of the resonator, and the influence of the extension length and the cross section shape of the extension tube on the acoustic characteristics of the resonator is discussed in detail. On the other hand, in order to broaden the muffled frequency band of the traditional Helmholtz resonators, the resonators are combined in series and parallel, and the influence of the combined structure on the acoustic characteristics is discussed in detail.


Author(s):  
S. M. Camporeale ◽  
A. Forte ◽  
B. Fortunato ◽  
M. Mastrovito ◽  
A. Ferrante

In modern gas turbines in which lean premixed flames are used to obtain low NOx emissions, large pressure oscillations may arise inside the combustor due to thermoacoustic combustion instability at frequencies corresponding to the natural acoustic frequency of the system. Such pressure fluctuations, that may cause structural damages, need to be damped in order to avoid a reduction of the operational range of the gas turbine. In this work Helmholtz resonators connected to the external envelope of the combustion chamber are examined as passive systems for damping the low frequency acoustic pressure in the case of an annular combustor. The acoustical behavior of the combustor has been first investigated by means of the Finite Element method, obtaining its acoustic eigenmodes and eigenfrequencies in order to tune the Helmholtz resonators on the frequency to be damped. In order to characterize the resonator, preliminary tests have been carried out on a simplified system composed of a Helmholtz resonator applied at the end of an impedance tube. Then the eigenmodes of the system obtained by connecting one or more resonators to the annular chamber and the damping effects obtained by varying the geometry, the number and the position of the resonators are analyzed. It appears that the peak of acoustic pressure characterizing the combustion chamber splits into two peaks of lower magnitude when the Helmholtz resonators are applied and the peak frequencies are correlated to the overall volume of resonant cavities, whilst lower effects are obtained by varying the position and the number of resonator units.


Author(s):  
Weiwei Wu ◽  
Yiheng Guan

In this work, modified designs of Helmholtz resonators with extended deflected neck are proposed, numerically evaluated and optimized aiming to achieve a better transmission loss performance over a broader frequency range. For this, 10 Helmholtz resonators with different extended neck configurations (e.g. the angle between extended neck and the y-axis) in the presence of a grazing flow are assessed. Comparison is then made between the proposed resonators and the conventional one, i.e. in the absence of an extended neck (i.e. Design A). For this, a two-dimensional linearized Navier Stokes equations-based model of a duct with the modified Helmholtz resonator implemented was developed in frequency domain. The model was first validated by comparing its numerical predictions with the experimental results available in the literature and the theoretical results. The model was then applied to evaluate the noise damping performance of the Helmholtz resonator with (1) an extended neck on the upstream side (Design B); (2) on the downstream side (Design C), (3) both upstream and downstream sides (Design D), (4) the angle between the extended neck and the y-axis, i.e. (a) 0°, (b) 30°, and (c) 45°, (d) 48.321°. In addition, the effects of the grazing flow Mach number (Ma) were evaluated. It was found that the transmission loss peaks of the Helmholtz resonator with the extended neck was maximized at Ma = 0.03 than at the other Mach numbers. Conventional resonator, i.e. Design A was observed to be associated with a lower transmission loss performance at a lower resonant frequency than those as observed on Designs B–D. Moreover, the optimum design of the proposed resonators with the extended neck is shown to be able to shift the resonant frequency by approximately 90 Hz, and maximum transmission loss could be increased by 28–30 dB. In addition, the resonators with extended necks are found to be associated with two or three transmission loss peaks, indicating that these designs have a broader effective frequency range. Finally, the neck deflection angles of 30° and 45° are shown to be involved with better transmission loss peaks than that with a deflection angle of 0°. In summary, the present study sheds light on maximizing the resonator’s noise damping performances by applying and optimizing an extended neck.


2021 ◽  
Vol 11 (18) ◽  
pp. 8678
Author(s):  
Byunghui Kim ◽  
Seokho Kim ◽  
Yejin Park ◽  
Marinus Mieremet ◽  
Heungguen Yang ◽  
...  

With the rapid increase in automobiles, the importance of reducing low-frequency noise is being emphasized for a comfortable urban environment. Helmholtz resonators are widely used to attenuate low-frequency noise over a narrow range. In this study, a slit-type soundproof panel is designed to achieve low-frequency noise attenuation in the range of 500 Hz to 1000 Hz with the characteristics of a Helmholtz resonator and the ability to pass air through the slits on the panel surface for reducing wind load. The basic dimension of the soundproof panel is determined using the classical formula and numerical analysis using a commercial program, COMSOL Multiphysics, for transmission loss prediction. From the numerical study, it is identified that the transmission loss performance is improved compared to the basic design according to the shape change and configuration method of the Helmholtz resonator. Although the correlation according to the shape change and configuration method cannot be derived, it is confirmed that it can be used as an effective method for deriving a soundproof panel design that satisfies the basic performance.


2018 ◽  
Vol 38 (2) ◽  
pp. 244-254 ◽  
Author(s):  
Zhengli Lu ◽  
Weichen Pan ◽  
Yiheng Guan

As a typical noise-attenuating device, Helmholtz resonators are widely implemented in aero-engines and gas turbines to decrease the transmission of acoustic noise. However, an asymmetric Helmholtz resonator could be designed and implemented due to the limited space available in the engines. To examine and optimize the noise-attenuating performances of the asymmetric resonator, comparison studies are performed. For this, a two-dimensional frequency-domain model of a cylindrical duct with a grazing flow is developed. An asymmetric Helmholtz resonator is attached as a side branch. The model containing the linearized Navier–Stokes equations is validated first by comparing the predicted results with the experimental ones available in the literature. Further validation is conducted by comparing the results of an asymmetric resonator with the analytical ones available in the literature. The effects of (1) neck offset distance from the center of the resonator cavity denoted by [Formula: see text] and (2) the grazing flow Mach number [Formula: see text] are evaluated. It is shown that as the grazing flow Mach number is increased, the resonant frequencies and the maximum transmission losses are dramatically varied for a given [Formula: see text]. As [Formula: see text] is increased from 0 to 0.5 and [Formula: see text], the resonant frequencies and the maximum transmission losses are increased. However, when [Formula: see text] is lower than 0.07, i.e. [Formula: see text], the transmission loss performances are almost unchanged with [Formula: see text] increased. The optimum design of the asymmetric resonator is shown to give rise to the resonant frequency being shifted by 10% and 2–5 dB more transmission loss at higher Mach number. Finally, visualization of vortex shedding formed at the neck of the asymmetric resonator confirms that acoustical energy is transformed into kinetic energy and absorbed by the surrounding air. This study opens up a numerical design approach to optimize an asymmetric resonator.


1995 ◽  
Vol 117 (3A) ◽  
pp. 323-331 ◽  
Author(s):  
A. Selamet ◽  
N. S. Dickey ◽  
J. M. Novak

A one-dimensional finite difference numerical method is applied for the simulation of sound attenuation in reactive silencers placed in an impedance tube configuration. This time-domain approach solves the nonlinear fundamental balance equations of mass, momentum and energy, and the equation of state. The temporal solution is first converted to the frequency domain by the Fast Fourier Transform, which is then processed by the two-microphone technique to yield transmission loss. Results are presented for the attenuation of acoustic disturbances in four basic configurations including the expansion chamber, Helmholtz resonator, quarter-wave resonator and Herschel-Quincke tube. A comparison to available experimental data and linearized acoustic theory shows excellent agreement for silencers with both anechoic and echoic terminations.


2021 ◽  
Vol 263 (2) ◽  
pp. 3975-3986
Author(s):  
Tenon Charly Kone ◽  
Sebastian Ghinet ◽  
Raymond Panneton ◽  
Thomas Dupont ◽  
Anant Grewal

The noise control at multiple tonal frequencies simultaneously, in the low frequency range, is a challenge for aerospace, ground transportation and building industries. In the past few decades, various low frequency noise control solutions based on acoustic metamaterial designs have been presented in the literature. These solutions showed promising performance and are considered a better alternative to conventional sound insulation materials. In the present investigation, it was noticed that subdividing the cavity of a Helmholtz resonator allowed the control of multi-tonal noise at several resonance frequencies simultaneously and a shift of the resonance peaks towards the low frequencies. This paper proposes concepts of Helmholtz resonators with subdivided cavities to improve the sound transmission loss (STL) performance and simultaneously control the noise at several tonal frequencies. HRs with cylindrical shaped cavities were embedded in a layer of porous material. The STL of the metamaterial noise insulation configuration was predicted using serial and parallel assemblies of transfer matrices (TMM) incorporating a thermo-viscous-acoustic approach to accurately account for the viscous and thermal losses of acoustic wave propagation within the metamaterial. The STL calculated using the proposed TMM approach were observed to be in excellent agreement with the finite element method (FEM) numerical results.


Acoustics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 630-641
Author(s):  
Sourabh Dogra ◽  
Arpan Gupta

Acoustic metamaterials are materials artificially engineered to control sound waves, which is not possible with conventional materials. We have proposed a design of an acoustic metamaterial plate with inbuilt Helmholtz resonators. The plate is made of Polylactic acid (PLA) which is fabricated using an additive manufacturing technique. It consists of Helmholtz resonator-shaped cavities of different sizes. In this paper, we have analyzed the acoustic properties of the Helmholtz resonators-based metamaterial plate experimentally as well as numerically. The experimental results are in good agreement with the numerical results. These types of 3D-printed metamaterial plates can find their application where high sound transmission loss is required to create a quieter ambience. There is an additional advantage of being lightweight because of the Helmholtz resonator-shaped cavities built inside the plate. Thus, these types of metamaterial plates can find their application in the design sector requiring lighter materials with high sound transmission loss.


Sign in / Sign up

Export Citation Format

Share Document