scholarly journals Long-Term Annual Surface Water Change in the Brazilian Amazon Biome: Potential Links with Deforestation, Infrastructure Development and Climate Change

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 566 ◽  
Author(s):  
Carlos Souza ◽  
Frederic Kirchhoff ◽  
Bernardo Oliveira ◽  
Júlia Ribeiro ◽  
Márcio Sales

The Brazilian Amazon is one of the areas on the planet with the fastest changes in forest cover due to deforestation associated with agricultural expansion and infrastructure development. These drivers of change, directly and indirectly, affect the water ecosystem. In this study, we present a long-term spatiotemporal analysis of surface water annual change and address potential connections with deforestation, infrastructure expansion and climate change in this region. To do that, we used the Landsat Data Archive (LDA), and Earth Engine cloud computing platform, to map and analyze annual water changes between 1985 and 2017. We detected and estimated the extent of surface water using a novel sub-pixel classifier based on spectral mixture analysis, followed by a post-classification segmentation approach to isolate and classify surface water in natural and anthropic water bodies. Furthermore, we combined these results with deforestation and infrastructure development maps of roads, hydroelectric dams to quantify surface water changes linked with them. Our results showed that deforestation dramatically disrupts small streams, new hydroelectric dams inundated landmass after 2010 and that there is an overall trend of reducing surface water in the Amazon Biome and watershed scales, suggesting a potential connection to more recent extreme droughts in the 2010s.

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1109
Author(s):  
Nobuaki Kimura ◽  
Kei Ishida ◽  
Daichi Baba

Long-term climate change may strongly affect the aquatic environment in mid-latitude water resources. In particular, it can be demonstrated that temporal variations in surface water temperature in a reservoir have strong responses to air temperature. We adopted deep neural networks (DNNs) to understand the long-term relationships between air temperature and surface water temperature, because DNNs can easily deal with nonlinear data, including uncertainties, that are obtained in complicated climate and aquatic systems. In general, DNNs cannot appropriately predict unexperienced data (i.e., out-of-range training data), such as future water temperature. To improve this limitation, our idea is to introduce a transfer learning (TL) approach. The observed data were used to train a DNN-based model. Continuous data (i.e., air temperature) ranging over 150 years to pre-training to climate change, which were obtained from climate models and include a downscaling model, were used to predict past and future surface water temperatures in the reservoir. The results showed that the DNN-based model with the TL approach was able to approximately predict based on the difference between past and future air temperatures. The model suggested that the occurrences in the highest water temperature increased, and the occurrences in the lowest water temperature decreased in the future predictions.


2018 ◽  
Vol 7 (1.4) ◽  
pp. 39
Author(s):  
Ridima Sharma ◽  
Sakshi Tanwar ◽  
Safder Rizvi

Cities appear as a major role player in the economy of any area reflecting the global integration of its economy as they house majority of large business groups. Migratory population and urban growth are direct contributors in this economic expansion, particularly in the present-day phase of globalization which in under developed countries causes densification and instability of agriculture and other existing land use thus bringing in the need of a proper land resource management.Focused attention is needed to integrate infrastructure development in various cities and linkages should be established between the creation and management of assets through a system of reforms for long-term sustainability. Himachal Pradesh is a hill state with some most difficult terrains of the country making the preparation of complete cadastral record of land nearly impossible only 80% of land is under revenue records. Thus the amount of habitable land decreases further with around 50 % of the land under forest cover. The aim of the study is to analyze the growth of urbanisation in Himachal Pradesh along with the factors responsible. This growth pattern can later be used to formulate proper land use management and infrastructure development policies for equitable development of the area.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251489
Author(s):  
Patrick A. Breach ◽  
Slobodan P. Simonovic

The ANEMI model is an integrated assessment model of global change that emphasizes the role of water resources. The model is based on the principles of system dynamics simulation to analyze changes in the Earth system using feedback processes. Securing water resources for the future is a key issue of global change, and ties into global systems of population growth, climate change, carbon cycle, hydrologic cycle, economy, energy production, land use and pollution generation. Here the third iteration of the model–ANEMI3 is described, along with the methods used for parameter estimation and model testing. The main differences between ANEMI3 and previous versions include: (i) implementation of the energy-economy system based on the principles of system dynamics simulation; (ii) incorporation of water supply as an additional sector in the global economy that parallels the production of energy; (iii) inclusion of climate change effects on land yield and potentially arable land for food production, and (iv) addition of nitrogen and phosphorus based nutrient cycles as indicators of global water quality, which affect the development of surface water supplies. The model is intended for analyzing long-term global feedbacks which drive global change. Because of this, there are limitations related to the spatial scale that is used. However, the model’s simplicity can be considered a strength, as it allows for the driving feedbacks to be more easily identified. The model in its current form allows for a variety of scenarios to be created to address global issues such as climate change from an integrated perspective, or to examine the change in one model sector on Earth system behaviour. The endogenous structure of the model allows for global change to be driven entirely by model structure rather than exogenous inputs. The new additions to the ANEMI3 model are found to capture long term trends associated with global change, while allowing for the development of water supplies to be represented using an integrated approach considering global economy and surface water quality.


Oryx ◽  
2020 ◽  
Vol 54 (6) ◽  
pp. 803-813
Author(s):  
Bárbara Moraes ◽  
Orly Razgour ◽  
João Pedro Souza-Alves ◽  
Jean P. Boubli ◽  
Bruna Bezerra

AbstractBrazil has a high diversity of primates, but increasing anthropogenic pressures and climate change could influence forest cover in the country and cause future changes in the distribution of primate populations. Here we aim to assess the long-term suitability of habitats for the conservation of three threatened Brazilian primates (Alouatta belzebul, Sapajus flavius and Sapajus libidinosus) through (1) estimating their current and future distributions using species distribution models, (2) evaluating how much of the areas projected to be suitable is represented within protected areas and priority areas for biodiversity conservation, and (3) assessing the extent of remaining forest cover in areas predicted to be suitable for these species. We found that 88% of the suitable areas are outside protected areas and only 24% are located in areas with forest cover. Although not within protected areas, 27% of the climatically suitable areas are considered priority areas for conservation. Future projections, considering a severe climate change scenario, indicate that A. belzebul, S. flavius and S. libidinosus may lose up to 94, 98 and 54% of their suitable range, respectively. The establishment of primate populations and their long-term survival in these areas are at risk. Mitigation actions such as the implementation of new protected areas, forest restoration and reduction of greenhouse gas emissions will be essential for the conservation of Brazilian primates.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1128
Author(s):  
Maurice Alfonso Duka ◽  
Tetsuya Shintani ◽  
Katsuhide Yokoyama

Climate warming can alter the thermal conditions of reservoirs. However, some hydraulic interventions can be explored to mitigate this impact. This study investigates the long-term effects of climate on the temperature and thermal structure of a monomictic reservoir that has had varying operations from 1959 to 2016. Reservoir progressively operated through three distinct periods, namely, (A) deep penstock withdrawal (DPW; 1959–1991), (B) purely selective withdrawal (SW; 1992–2001), and (C) combination of SW and vertical curtain (VC; 2002–2016). Although annual air temperatures are increasing (+0.15 °C decade−1) in the long term, the reservoir’s surface water temperatures have been found to be decreasing (−0.06 °C decade−1). Periods B and C produced colder profiles and exhibited lower heat content and higher potential energy anomaly than Period A. Furthermore, stronger thermoclines, as indicated by Brunt–Vaisala frequency, were observed in the two latter periods. The results of this study show that varying operations bear a stronger influence on the reservoir’s temperature and thermal structure than climate change itself. Mitigating the thermal impacts of climate warming in reservoirs appears promising with the use of SW and VC.


2018 ◽  
Vol 46 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Jennifer Hewson ◽  
Julie Hanta Razafimanahaka ◽  
Timothy Max Wright ◽  
Rina Mandimbiniaina ◽  
Mark Mulligan ◽  
...  

SummaryDecision-makers need readily accessible tools to understand the potential impacts of alternative policies on forest cover and greenhouse gas (GHG) emissions and to develop effective policies to meet national and international targets for biodiversity conservation, sustainable development and climate change mitigation. Land change modelling can support policy decisions by demonstrating potential impacts of policies on future deforestation and GHG emissions. We modelled land change to explore the potential impacts of expert-informed scenarios on deforestation and GHG emissions, specifically CO2 emissions, in the Ankeniheny–Zahamena Corridor in eastern Madagascar. We considered four scenarios: business as usual; effective conservation of protected areas; investment in infrastructure; and agricultural intensification. Our results highlight that effective forest conservation could deliver substantial emissions reductions, while infrastructure development will likely cause forest loss in new areas. Agricultural intensification could prevent additional forest loss if it reduced the need to clear more land while improving food security. Our study demonstrates how available land change modelling tools and scenario analyses can inform land-use policies, helping countries reconcile economic development with forest conservation and climate change mitigation commitments.


2009 ◽  
Vol 40 (2-3) ◽  
pp. 291-305 ◽  
Author(s):  
M. N. Futter ◽  
M. Forsius ◽  
M. Holmberg ◽  
M. Starr

Concentrations of dissolved organic carbon (DOC) are increasing in many surface waters across Europe. Two of the main mechanisms proposed to explain this increase are declines in sulfate (SO42−) deposition and changes in climate. Many of the reductions in SO42− have already occurred; climate change related effects are occurring now and will continue in the future. This paper presents the first application of a new version of INCA-C, the Integrated Catchments model for Carbon, which simulates the effects of both climate and SO42− deposition on surface water DOC concentration ([DOC]). The model was applied to Valkea-Kotinen, a small headwater catchment in Finland, where it was able to simulate present-day (1990–2007) trends in [DOC] in the lake and catchment outflow as functions of observed climate and European Monitoring and Evaluation Programme (EMEP)-modelled SO42− deposition. Using a parameter set derived from a present-day calibration, the model was run with two climate scenarios from the Special Report on Emissions Scenarios (SRES) and three EMEP deposition scenarios to simulate surface water [DOC] between 1960 and 2100. The results show that much of the historical increase in [DOC] can be explained as a result of historical declines in SO42− deposition and that surface water [DOC] will continue to increase as climate changes.


Sign in / Sign up

Export Citation Format

Share Document