scholarly journals Simulating Current and Future River-Flows in the Karakoram and Himalayan Regions of Pakistan Using Snowmelt-Runoff Model and RCP Scenarios

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 761 ◽  
Author(s):  
Huma Hayat ◽  
Tahir Ali Akbar ◽  
Adnan Ahmad Tahir ◽  
Quazi K. Hassan ◽  
Ashraf Dewan ◽  
...  

Upper Indus Basin (UIB) supplies more than 70% flow to the downstream agricultural areas during summer due to the melting of snow and glacial ice. The estimation of the stream flow under future climatic projections is a pre-requisite to manage water resources properly. This study focused on the simulation of snowmelt-runoff using Snowmelt-Runoff Model (SRM) under the current and future Representative Concentration Pathways (RCP 2.6, 4.5 and 8.5) climate scenarios in the two main tributaries of the UIB namely the Astore and the Hunza River basins. Remote sensing data from Advanced Land Observation Satellite (ALOS) and Moderate Resolution Imaging Spectroradiometer (MODIS) along with in-situ hydro-climatic data was used as input to the SRM. Basin-wide and zone-wise approaches were used in the SRM. For the zone-wise approach, basin areas were sliced into five elevation zones and the mean temperature for the zones with no weather stations was estimated using a lapse rate value of −0.48 °C to −0.76 °C/100 m in both studied basins. Zonal snow cover was estimated for each zone by reclassifying the MODIS snow maps according to the zonal boundaries. SRM was calibrated over 2000–2001 and validated over the 2002–2004 data period. The results implied that the SRM simulated the river flow efficiently with Nash-Sutcliffe model efficiency coefficient of 0.90 (0.86) and 0.86 (0.86) for the basin-wide (zone-wise) approach in the Astore and Hunza River Basins, respectively, over the entire simulation period. Mean annual discharge was projected to increase by 11–58% and 14–90% in the Astore and Hunza River Basins, respectively, under all the RCP mid- and late-21st-century scenarios. Mean summer discharge was projected to increase between 10–60% under all the RCP scenarios of mid- and late-21st century in the Astore and Hunza basins. This study suggests that the water resources of Pakistan should be managed properly to lessen the damage to human lives, agriculture, and economy posed by expected future floods as indicated by the climatic projections.

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2806
Author(s):  
Huma Hayat ◽  
Muhammad Saifullah ◽  
Muhammad Ashraf ◽  
Shiyin Liu ◽  
Sher Muhammad ◽  
...  

The global warming trends have accelerated snow and glacier melt in mountainous river basins, which has increased the probability of glacial outburst flooding. Recurrent flood events are a challenge for the developing economy of Pakistan in terms of damage to infrastructure and loss of lives. Flood hazard maps can be used for future flood damage assessment, preparedness, and mitigation. The current study focused on the assessment and mapping of flood-prone areas in small settlements of the major snow- and glacier-fed river basins situated in Hindukush–Karakoram–Himalaya (HKH) under future climate scenarios. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used for flood simulation and mapping. The ALOS 12.5 m Digital Elevation Model (DEM) was used to extract river geometry, and the flows generated in these river basins using RCP scenarios were used as the inflow boundary condition. Severe flooding would inundate an area of ~66%, ~86%, ~37% (under mid-21st century), and an area of ~72%, ~93%, ~59% (under late 21st century RCP 8.5 scenario) in the Chitral, Hunza, and Astore river basins, respectively. There is an urgent need to develop a robust flood mitigation plan for the frequent floods occurring in northern Pakistan.


1996 ◽  
Vol 33 (10-11) ◽  
pp. 37-43 ◽  
Author(s):  
John M. Anderson

Australia is a relatively dry continent with an average runoff of 50 mm per year. The use of water resources in some river basins is approaching the limits of sustainability. Some adverse environmental impacts have been observed resulting from water diversions and from both reclaimed water and stormwater discharges. The paper describes current water recycling initiatives in Australia. These include: beneficial reuse of reclaimed water for urban, residential, industrial and agricultural purposes; recycling of greywater and stormwater; advanced treatment using membrane technology; and water efficient urban design. Some possible water recycling scenarios for Australia in the 21st century are examined. The implications of these scenarios are discussed.


1989 ◽  
Vol 20 (3) ◽  
pp. 167-178 ◽  
Author(s):  
B. Dey ◽  
V. K. Sharma ◽  
A. Rango

In the Snowmelt-Runoff Model (SRM), the estimate of discharge volume is based on temperature condition in the form of degree days which are used to melt the snowpack in the area of the basin covered by snow as observed from satellites. Precipitation input is used to add any rainfall runoff to the snowmelt component. When SRM was applied to the large, international Kabul River basin, initial simulations were much above the observed stream flow values. Close inspection revealed several problems in the application of SRM to the Kabul Basin that were easily corrected. Foremost among the corrections were determination of an appropriate lapse rate, substitution of a more representative mean elevation for extrapolation of temperature data, and use of an automatic streamflow updating procedure. These improvements led to a simulation for 1976 that was comparable to other simulations on large, inaccessible basins. As SRM is applied to more basins similar to the Kabul River, the determination of suitable parameters for new basin will be enhanced. Additional improvements in simulations would result from installation of climate stations at the mean elevation of basins and work to assure delivery of timely and reliable satellite snow cover data.


2000 ◽  
Vol 31 (4-5) ◽  
pp. 267-286 ◽  
Author(s):  
Lars Bengtsson ◽  
Vijay P. Singh

Snowmelt induced runoff from river basins is usually successfully simulated using a simple degree-day approach and conceptual rainfall-runoff models. Fluctuations within the day can not be described by such crude approaches. In the present paper, it is investigated which degree of sophistication is required in snow models and runoff models to resolve the basin runoff from basins of different character, and also how snow models and runoff models must adapt to each other. Models of different degree of sophistication are tested on basins ranging from 6,000 km2 down to less than 1 km2. It is found that for large basins it is sufficient to use a very simple runoff module and a degree day approach, but that the snow model has to be distributed related to land cover and topography. Also for small forested basins, where most of the stream flow is of groundwater origin, the degree-day method combined with a conceptual runoff model reproduces the snowmelt induced runoff well. Where overland flow takes place, a high resolution snow model is required for resolving the runoff fluctuations at the basin outlet.


2018 ◽  
Vol 114 (04) ◽  
pp. 808 ◽  
Author(s):  
Smarika Kulshrestha ◽  
RAAJ Ramsankaran ◽  
Ajay Kumar ◽  
Manohar Arora ◽  
A. R. Senthil Kumar

2014 ◽  
Vol 519 ◽  
pp. 976-987 ◽  
Author(s):  
Guoqing Zhang ◽  
Hongjie Xie ◽  
Tandong Yao ◽  
Hongyi Li ◽  
Shuiqiang Duan

Author(s):  
V.K. Khilchevskyi ◽  

In contrast to the hydrological and hydrochemical zoning, hydrographic and water management zoning of Ukraine (2016) was created on a basin basis, taking into account the boundaries of river basins, and not physiographic zoning. The main function of hydrographic and water management zoning is water management. Primary is hydrographic zoning, and water management - based on it. The description of modern hydrographic zoning of the territory of Ukraine, approved in 2016 by the Verkhovna Rada of Ukraine and included in the Water Code of Ukraine is given. Hydrographic zoning is carried out for the development and implementation of river basin management plans. On the territory of Ukraine nine areas of river basins are allocated: Dnipro; Dnister; Danube; Southern Bug; Don; Vistula; rivers of the Crimea; rivers of the Black Sea coast; rivers of the Azov Sea coast 13 sub-basins are allocated in four river basins district. The water management zoning is described - the division of hydrographic units into water management areas, which is carried out for the development of water management balances. In the regions of the river basins in the territory of Ukraine allocated 132 water management areas, 59 of which are located in the Dnipro basin. About 9,000 bodies of surface water allocated for monitoring in Ukraine. Approved zoning is the implementation of the provisions of the EU Water Framework Directive 2000/60 / EC in the management of water resources in Ukraine. Modern hydrographic and water management zoning of the territory of Ukraine approximates the management of water resources of the state to European requirements.


Sign in / Sign up

Export Citation Format

Share Document