scholarly journals Flood Hazard Mapping of Rivers in Snow- and Glacier-Fed Basins of Different Hydrological Regimes Using a Hydrodynamic Model under RCP Scenarios

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2806
Author(s):  
Huma Hayat ◽  
Muhammad Saifullah ◽  
Muhammad Ashraf ◽  
Shiyin Liu ◽  
Sher Muhammad ◽  
...  

The global warming trends have accelerated snow and glacier melt in mountainous river basins, which has increased the probability of glacial outburst flooding. Recurrent flood events are a challenge for the developing economy of Pakistan in terms of damage to infrastructure and loss of lives. Flood hazard maps can be used for future flood damage assessment, preparedness, and mitigation. The current study focused on the assessment and mapping of flood-prone areas in small settlements of the major snow- and glacier-fed river basins situated in Hindukush–Karakoram–Himalaya (HKH) under future climate scenarios. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) model was used for flood simulation and mapping. The ALOS 12.5 m Digital Elevation Model (DEM) was used to extract river geometry, and the flows generated in these river basins using RCP scenarios were used as the inflow boundary condition. Severe flooding would inundate an area of ~66%, ~86%, ~37% (under mid-21st century), and an area of ~72%, ~93%, ~59% (under late 21st century RCP 8.5 scenario) in the Chitral, Hunza, and Astore river basins, respectively. There is an urgent need to develop a robust flood mitigation plan for the frequent floods occurring in northern Pakistan.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Vahdettin Demir ◽  
Ozgur Kisi

In this study, flood hazard maps were prepared for the Mert River Basin, Samsun, Turkey, by using GIS and Hydrologic Engineering Centers River Analysis System (HEC-RAS). In this river basin, human life losses and a significant amount of property damages were experienced in 2012 flood. The preparation of flood risk maps employed in the study includes the following steps: (1) digitization of topographical data and preparation of digital elevation model using ArcGIS, (2) simulation of flood lows of different return periods using a hydraulic model (HEC-RAS), and (3) preparation of flood risk maps by integrating the results of (1) and (2).


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 761 ◽  
Author(s):  
Huma Hayat ◽  
Tahir Ali Akbar ◽  
Adnan Ahmad Tahir ◽  
Quazi K. Hassan ◽  
Ashraf Dewan ◽  
...  

Upper Indus Basin (UIB) supplies more than 70% flow to the downstream agricultural areas during summer due to the melting of snow and glacial ice. The estimation of the stream flow under future climatic projections is a pre-requisite to manage water resources properly. This study focused on the simulation of snowmelt-runoff using Snowmelt-Runoff Model (SRM) under the current and future Representative Concentration Pathways (RCP 2.6, 4.5 and 8.5) climate scenarios in the two main tributaries of the UIB namely the Astore and the Hunza River basins. Remote sensing data from Advanced Land Observation Satellite (ALOS) and Moderate Resolution Imaging Spectroradiometer (MODIS) along with in-situ hydro-climatic data was used as input to the SRM. Basin-wide and zone-wise approaches were used in the SRM. For the zone-wise approach, basin areas were sliced into five elevation zones and the mean temperature for the zones with no weather stations was estimated using a lapse rate value of −0.48 °C to −0.76 °C/100 m in both studied basins. Zonal snow cover was estimated for each zone by reclassifying the MODIS snow maps according to the zonal boundaries. SRM was calibrated over 2000–2001 and validated over the 2002–2004 data period. The results implied that the SRM simulated the river flow efficiently with Nash-Sutcliffe model efficiency coefficient of 0.90 (0.86) and 0.86 (0.86) for the basin-wide (zone-wise) approach in the Astore and Hunza River Basins, respectively, over the entire simulation period. Mean annual discharge was projected to increase by 11–58% and 14–90% in the Astore and Hunza River Basins, respectively, under all the RCP mid- and late-21st-century scenarios. Mean summer discharge was projected to increase between 10–60% under all the RCP scenarios of mid- and late-21st century in the Astore and Hunza basins. This study suggests that the water resources of Pakistan should be managed properly to lessen the damage to human lives, agriculture, and economy posed by expected future floods as indicated by the climatic projections.


2011 ◽  
Vol 8 (1) ◽  
pp. 305-363 ◽  
Author(s):  
C. Herold ◽  
F. Mouton

Abstract. Our aim is to produce a world map of flooded areas for a 100 year return period, using a method based on large rivers peak flow estimates derived from mean monthly discharge time-series. Therefore, the map is supposed to represent flooding that affects large river floodplains, but not events triggered by specific conditions like coastal or flash flooding for instance. We first generate for each basin a set of hydromorphometric, land cover and climatic variables. In case of an available discharge record station at the basin outlet, we base the hundred year peak flow estimate on the corresponding time-series. Peak flow magnitude for basin outlets without gauging stations is estimated by statistical means, performing several regressions on the basin variables. These peak flow estimates enable the computation of corresponding flooded areas using hydrologic GIS processing on digital elevation model.


2017 ◽  
Vol 13 ◽  
pp. 52-57
Author(s):  
Susheel Dangol

Flood is one of the striking water induced disaster that hits most of the part of the world. In Nepal also it is one of the serious disasters which affect the study describes the technical approach of probable flood hazard analysis. Segment of Balkhu River within the Balkhu catchment of area 44.37 km2 from Kirtipur gorge to Bagmati confluence was taken as area of study. The total length of the study segment was 5485.89 m. One dimension HEC-RAS (Hydrologic Engineering Center-River Analysis System) model was used for the analysis. The study shows that higher flood depth increases and low flood depth decreases with increase in intensity of flood. Also, huge area of barren land area is affected by flood and few percentage of settlement area is affected by flood indicating the damages to the human lives. Huge area of barren land indicates that in future human lives are more prone to disasters as those lands have gone through planning for future settlement.Nepalese Journal on Geoinformatics -13, 2014, Page: 52-57


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1022 ◽  
Author(s):  
Yulian Liang ◽  
Yongli Wang ◽  
Yinjun Zhao ◽  
Yuan Lu ◽  
Xiaoying Liu

Floods have been experienced with greater frequency and more severity under global climate change. To understand the flood hazard and its variation in the future, the current and future flood hazards in the 21st century in China are discussed. Floods and their trends are assessed using the accumulation precipitation during heavy rainfall process (AP_HRP), which are calculated based on historical meteorological observations and the outputs of a global climate model (GCM) under three Representative Concentration Pathway (RCP) scenarios. The flood-causing HRPs counted by the flood-causing critical precipitation (the 60% fractile of AP_HRP) capture more than 70% of historical flood events. The projection results indicate that the flood hazards could increase under RCP4.5 and RCP8.5 and increase slightly under RCP2.6 during the 21st century (2011–2099). The spatial characteristics of flood hazards and their increasing trends under the three RCPs are similar in most areas of China. More floods could occur in southern China, including Guangdong, Hainan, Guangxi and Fujian provinces, which could become more serious in southeastern China and the northern Yunnan province. Construction of water conservancy projects, reservoir dredging, improvement of drainage and irrigation equipment and enhancement of flood control and storage capacity can mitigate the impacts of floods and waterlogging on agriculture.


2013 ◽  
Vol 274 ◽  
pp. 496-499
Author(s):  
Ya Qiu Liu ◽  
Chen Hui Zhang ◽  
Xiao Peng Zhang

Flood disaster affects the development of our national economy seriously and made people’s life and property in danger. It also destroyed our ecological environment. In this paper, a model which is based on the geographic information system (GIS) has been introduced with the flood submerging range and submerging algorithm. Experimental results with Xi-tiao-xi area flood region using of digital elevation model (DEM), provides that it is possible to make a rapid flood damage assessment and scientific flood control decision service. The simulation performance is accurate and rapid.


2017 ◽  
Vol 14 ◽  
pp. 20-24
Author(s):  
Susheel Dangol ◽  
Arnob Bormudoi

Flood is one of the striking water induced disaster that hits most of the part of the world. In Nepal also it is one of the serious disasters which affect the human lives and huge amount of property. The increase of population and squatter settlements of landless people living at the bank of the river has tremendous pressure in encroachment of flood plain making them vulnerable to the flood damage. The study describes the technical approach of probable flood vulnerability and flood hazard analysis. Bishnumati catchment was taken as area of study. One dimension model of HEC-RAS with HEC-GeoRAS interface in co-ordination with ArcGIS was applied for the analysis. Analysis shows that the flood area increases with flood intensity. Higher flood depth increases and lower flood depth decreases with increase in intensity of flood. Inundation of huge area of urban land indicates that in future human lives are more prone to flood disaster. Thus, the study may help in future planning and management for future probable disaster.Nepalese Journal on Geoinformatics, Vol. 14, 2015, page: 20-24


2021 ◽  
Author(s):  
mageswaran thangaraj ◽  
Sachithanandam V ◽  
Sridhar R ◽  
Manik Mahapatra ◽  
R Purvaja ◽  
...  

Abstract We report here a four decades of shoreline changes and possible sea level rise (SLR) impact on landuse/landcover (LULC) in Little Andaman Island by using remote sensing (RS) and GIS techniques. A total of six remote sensing data sets covering years between 1976 and 2018 were used to understand the shoreline changes. Moreover, a Digital Shoreline Analysis System (DSAS) was used to estimate short- and long- term shoreline changes from ArcGIS environment. Besides, the Island vulnerability due to SLR was studied through using digital elevation model (DEM). As a result of Sumatra earthquake (2004), the results were showed a significant variation in shorline upliftment and subsidence. The land subsidence was noticed in the range of 1042-3077 ha with sea level rise between 1 and 5 m. Hence, we conclude that Little Andaman Island is vulnerable to SLR and overwhelm low elvation coastal zone.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 29
Author(s):  
Fibor J. Tan ◽  
Edgardo Jade R. Rarugal ◽  
Francis Aldrine A. Uy

Flooding is a perennial problem in the Philippines during the monsoon season intensified by the effects of typhoon. On average, there are 20 typhoons that enter the Philippine Area of Responsibility (PAR), and many of these make landfall causing catastrophic aftermath. Extreme rainfall events could lead to flooding in the downstream floodplain and landslide in mountainous terrains. In this study, which is for the case of Calumpang River that drains to the populated and developing region of Batangas City, the focus is on flooding in the floodplain areas. The river was modelled using LiDAR digital elevation model (DEM) that has an accuracy of 20cm in the vertical and 50cm in the horizontal. The result of this is river hydraulic model that can be used to accurately generate flood inundation simulations and flood hazard maps.  


Sign in / Sign up

Export Citation Format

Share Document