scholarly journals Revisiting Surface-Subsurface Exchange at Intertidal Zone with a Coupled 2D Hydrodynamic and 3D Variably-Saturated Groundwater Model

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 902
Author(s):  
Zhi Li ◽  
Ben R. Hodges

A new high-performance numerical model (Frehg) is developed to simulate water flow in shallow coastal wetlands. Frehg solves the 2D depth-integrated, hydrostatic, Navier–Stokes equations (i.e., shallow-water equations) in the surface domain and the 3D variably-saturated Richards equation in the subsurface domain. The two domains are asynchronously coupled to model surface-subsurface exchange. The Frehg model is applied to evaluate model sensitivity to a variety of simplifications that are commonly adopted for shallow wetland models, especially the use of the diffusive wave approximation in place of the traditional Saint-Venant equations for surface flow. The results suggest that a dynamic model for momentum is preferred over diffusive wave model for shallow coastal wetlands and marshes because the latter fails to capture flow unsteadiness. Under the combined effects of evaporation and wetting/drying, using diffusive wave model leads to discrepancies in modeled surface-subsurface exchange flux in the intertidal zone where strong exchange processes occur. It indicates shallow wetland models should be built with (i) dynamic surface flow equations that capture the timing of inundation, (ii) complex topographic features that render accurate spatial extent of inundation, and (iii) variably-saturated subsurface flow solver that is capable of modeling moisture change in the subsurface due to evaporation and infiltration.

1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


1994 ◽  
Vol 47 (6S) ◽  
pp. S3-S13 ◽  
Author(s):  
Parviz Moin ◽  
Thomas Bewley

A brief review of current approaches to active feedback control of the fluctuations arising in turbulent flows is presented, emphasizing the mathematical techniques involved. Active feedback control schemes are categorized and compared by examining the extent to which they are based on the governing flow equations. These schemes are broken down into the following categories: adaptive schemes, schemes based on heuristic physical arguments, schemes based on a dynamical systems approach, and schemes based on optimal control theory applied directly to the Navier-Stokes equations. Recent advances in methods of implementing small scale flow control ideas are also reviewed.


2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Giancarlo Alfonsi

The direct numerical simulation of turbulence (DNS) has become a method of outmost importance for the investigation of turbulence physics, and its relevance is constantly growing due to the increasing popularity of high-performance-computing techniques. In the present work, the DNS approach is discussed mainly with regard to turbulent shear flows of incompressible fluids with constant properties. A body of literature is reviewed, dealing with the numerical integration of the Navier-Stokes equations, results obtained from the simulations, and appropriate use of the numerical databases for a better understanding of turbulence physics. Overall, it appears that high-performance computing is the only way to advance in turbulence research through the front of the direct numerical simulation.


1965 ◽  
Vol 69 (658) ◽  
pp. 714-718 ◽  
Author(s):  
Ronald D. Mills

The Navier-Stokes equations are solved iteratively on a small digital computer for the class of flows generated within a rectangular “cavity” by a surface passing over its open end. Solutions are presented for depth/breadth ratios ƛ=0.5 (shallow), 10 (square), 20 (deep) and Reynolds number 100. Flow photographs ore obtained which largely confirm the predicted flows. The theoretical velocity profiles and pressure distributions through the centre of the vortex in the square cavity are calculated.In an appendix an improved finite difference formula is given for the vorticity generated at a moving boundary.Since Thorn began his pioneering work some thirty-five years ago the number of numerical solutions which have been obtained for the equations of incompressible viscous fluid motion remains small (see bibliographies of Thom and Apelt, Fromm). The known solutions are principally for steady streaming flows, although two methods have now been used with success for non-steady flows (Payne jets and Fromm flow past obstacles). By contrast this paper is concerned with the class of closed flows generated in a rectangular region of varying depth/breadth ratio by a surface passing over an open end. This problem has been considered for a number of reasons.


1958 ◽  
Vol 8 ◽  
pp. 966-974
Author(s):  
H. E. Petschek

Analyses of aerodynamic dissipation in ordinary un-ionized gases are all based upon the Navier-Stokes equations. These equations relate the rate of dissipation to the local gradients in velocity and temperature through the viscosity and heat conduction coefficients. Although it is true that in many flow situations the magnitude of the total dissipation in the gas does not depend on the magnitude of the viscosity coefficient, this coefficient does determine the minimum scale of variations observed in the gas and the form of the Navier-Stokes equations determines the type of phenomena which are observed on a small scale. In order to discuss dissipation in an ionized gas in the presence of a magnetic field, it is therefore necessary to re-examine the derivation of the basic flow equations. This paper attempts to do this for a case of a completely ionized gas and demonstrates that the basic microscopic dissipation mechanism is appreciably different. For example, it is shown that the minimum length in which the properties of the flow field can change noticeably is appreciably less than one mean free path.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
R.K. Saket ◽  
Anil Kumar

This paper presents a convective dominated reliable diffusion process in an axi-symmetric tube with a local constriction simulating a stenos artery considering the porosity effects. The investigations demonstrate the effects of wall shear stress and recirculation flow on the concentration distribution in the vessels lumen and on wall mass transfer keeping the porosity in view. The flow is governed by the incompressible Navier-Stokes equations for Newtonian fluid in porous medium. The convection diffusion equation has been used for the mass transport. The effect of porosity is examined on the velocity field and wall stress. The numerical solutions of the flow equations and the coupled mass transport equations have been obtained using a finite difference method. This paper explains the reliable effects of flow porosity on the mass transport.


2013 ◽  
Vol 753-755 ◽  
pp. 2731-2735
Author(s):  
Wei Cao ◽  
Zheng Hua Wang ◽  
Chuan Fu Xu

The graphics processing unit (GPU) has evolved from configurable graphics processor to a powerful engine for high performance computer. In this paper, we describe the graphics pipeline of GPU, and introduce the history and evolution of GPU architecture. We also provide a summary of software environments used on GPU, from graphics APIs to non-graphics APIs. At last, we present the GPU computing in computational fluid dynamics applications, including the GPGPU computing for Navier-Stokes equations methods and the GPGPU computing for Lattice Boltzmann method.


Author(s):  
Holger Martin

In 1969, S. G. Brush and C. W. F. Everitt published a historical review, that was reprinted as subchapter 5.5 Maxwell, Osborne Reynolds, and the radiometer, in Stephen G. Brush’s famous book The Kind of Motion We Call Heat. This review covers the history of the explanation of the forces acting on the vanes of Crookes radiometer up to the end of the 19th century. The forces moving the vanes in Crookes radiometer (which are not due to radiation pressure, as initially believed by Crookes and Maxwell) have been recognized as thermal effects of the remaining gas by Reynolds — from his experimental and theoretical work on Thermal Transpiration and Impulsion, in 1879 — and by the development of the differential equations describing Thermal Creeping Flow, induced by tangential stresses due to a temperature gradient on a solid surface by Maxwell, earlier in the same year, 1879. These fundamental physical laws have not yet made their way into the majority of textbooks of heat transfer and fluid mechanics so far. A literature research about the terms of Thermal Transpiration and Thermal Creeping Flow, in connection with the radiometer forces, resulted in a large number of interesting papers; not only the original ones as mentioned in subchapter 5.5 of Brush’s book, but many more in the earlier twentieth century, by Martin Knudsen, Wilhelm Westphal, Albert Einstein, Theodor Sexl, Paul Epstein and others. The forces as calculated from free molecular flow (by Knudsen), increase linearly with pressure, while the forces from Maxwell’s Thermal Creeping Flow decrease with pressure. In an intermediate range of pressures, depending on the characteristic geometrical dimensions of flow channels or radiometer vanes, an appropriate interpolation between these two kinds of forces, as suggested by Wilhelm Westphal and later by G. Hettner, goes through a maximum. Albert Einstein’s approximate solution of the problem happens to give the order of magnitude of the forces in the maximum range. A comprehensive formula and a graph of the these forces versus pressure combines all the relevant theories by Knudsen (1910), Einstein (1924), Maxwell (1879) (and Hettner (1926), Sexl (1928), and Epstein (1929) who found mathematical solutions for Maxwells creeping flow equations for non-isothermal spheres and circular discs, which are important for thermophoresis and for the radiometer). The mechanism of Thermal Creeping Flow will become of increasing interest in micro- and submicro-channels in various new applications, so it ought to be known to every graduate student of heat transfer in the future. That’s one of the reasons why some authors have recently questioned the validity of the classical Navier-Stokes, Fourier, and Fick equations: Dieter Straub (1996) published a book on an Alternative Mathematical Theory of Non-equilibrium Phenomena. Howard Brenner (since 2005) wrote a number of papers, like Navier-Stokes, revisited, and Bi-velocity hydrodynamics, explicitly pointing to the forces acting on the vanes of the lightmill, to thermophoresis and related phenomena. Franz Durst (since 2006) also developed modifications of the classical Navier-Stokes equations. So, Reynolds, Maxwell, and the radiometer may finally have initiated a revision of the fundamental equations of thermofluiddynamics and heat- and mass transfer.


Author(s):  
H. M. Jang ◽  
M. F. Platzer ◽  
J. A. Ekaterinaris ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp–type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler and NACA–0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en–method and the transitional region is modelled properly.


2021 ◽  
Vol 22 (4) ◽  
Author(s):  
Damian Goik ◽  
Krzysztof Banaś ◽  
Jan Bielański ◽  
Kazimierz Chłoń

We describe an approach for efficient solution of large scale convective heat transfer problems, formulated as coupled unsteady heat conduction and incompressible fluid flow equations. The original problem is discretized in time using classical implicit methods, while stabilized finite elements are used for space discretization. The algorithm employed for the discretization of the fluid flow problem uses Picard's iterations to solve the arising nonlinear equations. Both problems, heat transfer and Navier-Stokes quations, give rise to large sparse systems of linear equations. The systems are solved using iterative GMRES solver with suitable preconditioning. For the incompressible flow equations we employ a special preconditioner based on algebraic multigrid (AMG) technique. The paper presents algorithmic and implementation details of the solution procedure, which is suitably tuned, especially for ill conditioned systems arising from discretizations of incompressible Navier-Stokes equations. We describe parallel implementation of the solver using MPI and elements of PETSC library. The scalability of the solver is favourably compared with other methods such as direct solvers and standard GMRES method with ILU preconditioning.  


Sign in / Sign up

Export Citation Format

Share Document