Assessment of runoff contributing catchment areas in rainfall runoff modelling

2006 ◽  
Vol 54 (6-7) ◽  
pp. 49-56 ◽  
Author(s):  
S. Thorndahl ◽  
C. Johansen ◽  
K. Schaarup-Jensen

In numerical modelling of rainfall caused runoff in urban sewer systems an essential parameter is the hydrological reduction factor which defines the percentage of the impervious area contributing to the surface flow towards the sewer. As the hydrological processes during a rainfall are difficult to determine with significant precision the hydrological reduction factor is implemented to account all hydrological losses except the initial loss. This paper presents an inconsistency between calculations of the hydrological reduction factor, based on measurements of rainfall and runoff, and till now recommended literature values for residential areas. It is proven by comparing rainfall-runoff measurements from four different residential catchments that the literature values of the hydrological reduction factor are over-estimated for this type of catchment. In addition, different catchment descriptions are presented in order to investigate how the hydrological reduction factor depends on the level of detail regarding the catchment description. When applying a total survey of the catchment area, including all possible impervious surfaces, a hydrological reduction factor of approximately 0.5 for residential areas with mainly detached houses is recommended–contrary to the literature recommended values of 0.7–0.9.

2007 ◽  
Vol 55 (4) ◽  
pp. 93-101 ◽  
Author(s):  
R.P.S. Schilperoort ◽  
H.A.J. Meijer ◽  
C.M.L. Flamink ◽  
F.H.L.R. Clemens

This paper presents considerations for the application of the natural water isotope method on catchment areas. For the estimation of the amount of infiltration and inflow in sewer systems the paper shows two applications in the Netherlands: one successful application on a relatively small catchment area with a simple geo-hydrological groundwater system and one unsuccessful application in an area that shows a large heterogeneity of δ18O values in groundwater. Also, the paper focuses on the validity of the assumption that the isotopic ratios of drinking water are equal to those of strict domestic wastewater. In the transition from drinking water to strict wastewater it is shown that changes in isotopic composition of the water due to evaporation in common household appliances and effects inside the human body are insignificant. However, the presence of high-efficiency condensing boilers in an area can significantly influence the δ18O value of strict wastewater, especially in winter months. This effect should be taken into account when applying the isotope method in such areas.


Hydrology ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 26
Author(s):  
Zening Wu ◽  
Bingyan Ma ◽  
Huiliang Wang ◽  
Caihong Hu

The storm water management model (SWMM) is widely used in urban rainfall runoff simulations, but there are no clear rules for the division of its sub catchment areas. At present, the popular sub catchment area division method takes the average slope as the slope parameter of the sub catchment area, which brings errors to the model in mechanism. Based on the current method, this paper proposes a new method to further subdivide the sub catchment area of the SWMM model, according to the Digital Elevation Model (DEM) data of underlying surface, slope and aspect information. By comparing with the previous methods, it was found that the division method based on slope and aspect can make the setting of model parameters and hydraulic exchange conditions clearer, and improve the accuracy of the model on a certain level.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 101-110 ◽  
Author(s):  
W. v. d. Emde ◽  
H. Fleckseder ◽  
N. Matsché ◽  
F. Plahl-Wabnegg ◽  
G. Spatzierer ◽  
...  

Neusiedlersee (in German) / Fertö tó (in Hungarian) is a shallow lake at the Austro-Hungarian border. In the late 1970s, the question arose what to do in order to protect the lake against eutrophication. A preliminary report established the need for point-source control as well as gave first estimates for non-point source inputs. The proposed point-source control was quickly implemented, non-point sources were - among other topics - studied in detail in the period 1982 - 1986. The preliminary work had shown, based on integrated sampling and data from literature, that the aeolic input outweighed the one via water erosion (work was for totP only). In contrast to this, the 1982 - 1986 study showed that (a) water erosion by far dominates over aeolic inputs and (b) the size of nonpoint-source inputs was assessed for the largest catchment area in pronounced detail, whereas additional estimates were undertaken for smaller additional catchment areas. The methods as well as the results are presented in the following. The paper concludes with some remarks on the present management practice of nonpoint-source inputs.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 95-100 ◽  
Author(s):  
Robin G. Veldkamp ◽  
Jan B. M. Wiggers

This research is based on CSO emissions from Dutch sewer systems. During the years 1982 to 1989 research was done on several sewer systems, all of them equiped with a single overflow weir. Pollutant emissions were calculated from the measurements, whereby each storm was considered as a single event. Extreme emissions have a detrimental, sometimes even desastrous effect on water quality. Such extreme emissions are the result of heavy storms, giving it a low frequency of occurrence. From the measurements a statistical model was developed enabling the user to forecast extreme waste emissions with a certain return period in a range of 2 to 10 years. Five pollutants are put in the model: BOD, COD, Kjeldahl nitrogen, total phosphate and suspended solids. The model operates with standardized emission values in kg per ha of impervious area. When the model is used in practice the runoff area to the specific overflow under consideration has to be known.


2012 ◽  
Vol 518-523 ◽  
pp. 4273-4277
Author(s):  
Huang Jinbai ◽  
Wang Bin ◽  
Hinokidani Osamu ◽  
Kajikawa Yuki

In order to achieve the accurate calculation of “rainfall-runoff” process combined with snowmelt and to provide a useful numerical method for estimating surface water resources in a basin, a runoff numerical calculation model of “rainfall-runoff” process combined with snowmelt was developed for a distributive hydrological model. Numerical method on “Rainfall-runoff” process was set up by applying kinematic wave theory, and calculations on snowmelt were made using energy budget method. Validity of the model was verified through numerical simulation of the observed surface flow. Results of the error analysis indicated that a large error existed between the numerical results and the observed ones without considering snowmelt whereas the error was at the permissible range of criterion (< 3 %) by considering snowmelt. The results showed that the snowmelt calculation should be considered at snow melt area when performing the runoff calculation.


2010 ◽  
Vol 10 (11) ◽  
pp. 2235-2240 ◽  
Author(s):  
D. G. Hadjimitsis

Abstract. The aim of this study is to quantify the actual urbanization activity near the catchment area in the urban area of interest located in the vicinity of the Agriokalamin River area of Kissonerga Village in Paphos District. Remotely sensed data such as aerial photos, Landsat-5/7 TM/ETM+ and Quickbird image data have been used to track the urbanization activity from 1963 to 2008. In-situ GPS measurements have been used to locate in-situ the boundaries of the catchment area. The results clearly illustrate that tremendous urban development has taken place ranging from 0.9 to 33% from 1963 to 2008, respectively. A flood risk assessment and hydraulic analysis were also performed.


2002 ◽  
Vol 46 (6-7) ◽  
pp. 379-387
Author(s):  
D. Jacobi ◽  
K.-J. Sympher

Berlin Wasserbetriebe is in need of a significant and longterm investment in the rehabilitation of its sewer system. With ratification of the European Standard EN 752 Part 5, comprehensive rules have been set out for the rehabilitation of drain and sewer systems: hydraulic performance, environmental impact and structural integrity of complete catchment areas are given equal consideration. Taking this into account, Berliner Wasserbetriebe has developed a sewer rehabilitation strategy. Economic aspects are integrated with a cost-benefit-analysis; the significance of the remaining useful life of a pipe section is examined.


2012 ◽  
Vol 4 (1) ◽  
Author(s):  
Márton Veress ◽  
István Németh ◽  
Roland Schläffer

AbstractThe effects of the intensive rainfall episodes in the years 2009 and 2010 in the Kőszeg Mountains were investigated. Channel profiles were constructed at various times during these periods, which were used to describe the channel changes. We measured the length of the incised and filled sections on multiple occasions. We could establish the degree and the direction of the changes using this data. The sediment veneer that developed in the area of Kőszeg town was mapped and its conditions of development were examined. The erosion and accumulation landforms developed during these years were classified and described. These forms are the following: rills, gullies, alluvial fans and sediment veneer. We distinguished and characterised those which had previously formed, but they were changed or increased (the channels). We established the conditions under which the sediment veneer can develop, furthermore those conditions which can increase the chance of the formation of this landform. These conditions are the following: the high density of roads in the catchment areas of valleys leading to settlements, the great thickness of superficial deposit, and the steep slope of the surface of the catchment area. We created theoretical classification of the morphological environment where the development of sediment veneer may happen and identified settlements with structures which promote or prevent the development of the sediment veneer. We determined the probability of the development of the sediment veneer at some settlements in Kőszeg, and suggestions have been given to decrease the chance of the development of this sediment veneer.


2017 ◽  
Vol 78 (1) ◽  
pp. 28-38
Author(s):  
Paweł Franczak

Abstract Mountain streams are subjected to the continuous reshaping of their river beds during floods, with the greatest changes occurring during extreme floods caused by sudden and heavy rainfall. River bed transformations during these flash floods are more severe in forested areas, where wooden logs carried by swollen streams are more likely to be deposited on the ground, which in turn leads to the greater accumulation of other transported material and debris. The study was conducted in the Rybny Potok catchment area (Babia Góra National Park). An extreme flash flood occurred on 15–16 May 2014 because of heavy rainfall, which, on 15 May amounted to 138 mm. The total amount of precipitation in the catchment area was 216.5 mm in three days. This resulted in sudden and full streams in spate, contributing to significant geomorphological transformations reaching all the way to the bottom of the river beds. During the flash flood, already established river beds and streams increased in size and many new river courses were formed.


Sign in / Sign up

Export Citation Format

Share Document