scholarly journals Investigation on Farmland Abandonment of Terraced Slopes Using Multitemporal Data Sources Comparison and Its Implication on Hydro-Geomorphological Processes

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1552 ◽  
Author(s):  
Pepe ◽  
Mandarino ◽  
Raso ◽  
Scarpellini ◽  
Brandolini ◽  
...  

This paper presents a quantitative multi-temporal analysis performed in a GIS environment and based on different spatial information sources. The research is aimed at investigating the land use transformations that occurred in a small coastal terraced basin of Eastern Liguria from the early 1950s to 2011. The degree of abandonment of cultivated terraced slopes together with its influence on the distribution, abundance, and magnitude of rainfall-induced shallow landslides were accurately analysed. The analysis showed that a large portion of terraced area (77.4%) has been abandoned over approximately sixty years. This land use transformation has played a crucial role in influencing the hydro-geomorphological processes triggered by a very intense rainstorm that occurred in 2011. The outcomes of the analysis revealed that terraces abandoned for a short time showed the highest landslide susceptibility and that slope failures affecting cultivated zones were characterized by a lower magnitude than those which occurred on abandoned terraced slopes. Furthermore, this study highlights the usefulness of cadastral data in understanding the impact of rainfall-induced landslides due to both a high spatial and thematic accuracy. The obtained results represent a solid basis for the investigation of erosion and the shallow landslide susceptibility of terraced slopes by means of a simulation of land use change scenarios.

2021 ◽  
Vol 13 (11) ◽  
pp. 2166
Author(s):  
Xin Yang ◽  
Rui Liu ◽  
Mei Yang ◽  
Jingjue Chen ◽  
Tianqiang Liu ◽  
...  

This study proposed a new hybrid model based on the convolutional neural network (CNN) for making effective use of historical datasets and producing a reliable landslide susceptibility map. The proposed model consists of two parts; one is the extraction of landslide spatial information using two-dimensional CNN and pixel windows, and the other is to capture the correlated features among the conditioning factors using one-dimensional convolutional operations. To evaluate the validity of the proposed model, two pure CNN models and the previously used methods of random forest and a support vector machine were selected as the benchmark models. A total of 621 earthquake-triggered landslides in Ludian County, China and 14 conditioning factors derived from the topography, geological, hydrological, geophysical, land use and land cover data were used to generate a geospatial dataset. The conditioning factors were then selected and analyzed by a multicollinearity analysis and the frequency ratio method. Finally, the trained model calculated the landslide probability of each pixel in the study area and produced the resultant susceptibility map. The results indicated that the hybrid model benefitted from the features extraction capability of the CNN and achieved high-performance results in terms of the area under the receiver operating characteristic curve (AUC) and statistical indices. Moreover, the proposed model had 6.2% and 3.7% more improvement than the two pure CNN models in terms of the AUC, respectively. Therefore, the proposed model is capable of accurately mapping landslide susceptibility and providing a promising method for hazard mitigation and land use planning. Additionally, it is recommended to be applied to other areas of the world.


2013 ◽  
Vol 17 (7) ◽  
pp. 2459-2472 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen ◽  
D. Molden

Abstract. Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i) a resource base sheet, (ii) an evapotranspiration sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change) and internal influences (e.g., infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.


2019 ◽  
Vol 11 (24) ◽  
pp. 6931 ◽  
Author(s):  
Suresh Chaudhary ◽  
Yukuan Wang ◽  
Amod Mani Dixit ◽  
Narendra Raj Khanal ◽  
Pei Xu ◽  
...  

Land use change, especially that due to farmland abandonment in the mountains of Nepal, is being seen as a major factor contributing to increasing eco-environmental risk, undesirable changes in the socio-cultural landscape, biodiversity loss, and reduced capacity of the ecosystem to provide key services. This study aims to: i) evaluate eco-environmental risk for one of the high mountain river basins, the Dordi river basin in Nepal, that has a growing potential of farmland abandonment; and ii) develop a risk-based land use planning framework for mitigating the impact of risk and for enhancing sustainable management practices in mountain regions. We employed a multi-criteria analytic hierarchy process (AHP) to assign risk weightage to geophysical and socio-demographic factors, and performed spatial superposition analysis in the model builder of a geographic information system (GIS) to produce an eco-environmental risk map, which was subjected to a reliability check against existing eco-environmental conditions by ground truthing and using statistical models. The result shows that 22.36% of the basin area has a high level of risk. The very high, extreme high, moderate, and low zones accounted 17.38%, 7.93%, 28.49%, and 23.81%, respectively. A high level of eco-environmental risk occurs mostly in the north and northwest, but appears in patches in the south as well, whereas the level of moderate risk is concentrated in the southern parts of the river basin. All the land use types, notably, forest, grassland, shrub land, and cultivated farmland, are currently under stress, which generally increases with elevation towards the north but is also concentrated along the road network and river buffer zones where human interference with nature is the maximum. The risk map and the framework are expected to provide information and a scientific evidence-base for formulating and reasonable development strategies and guidelines for consensus-based utilization and protection of eco-environmental resources in the river basin. As an awareness raising tool, it also can activate social processes enabling communities to design for and mitigate the consequences of hazardous events. Moreover, this risk assessment allows an important link in understanding regional eco-environmental risk situation, land use, natural resources, and environmental management.


2012 ◽  
Vol 9 (11) ◽  
pp. 12879-12919 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen ◽  
D. Molden

Abstract. Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i) a resource base sheet, (ii) a consumption sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change) and internal influences (e.g. infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.


Author(s):  
M Persichillo ◽  
M Bordoni ◽  
C Meisina ◽  
C Bartelletti ◽  
R Giannecchini ◽  
...  

Author(s):  
M.G. Persichillo ◽  
M. Bordoni ◽  
C. Meisina ◽  
C. Bartelletti ◽  
R. Giannecchini ◽  
...  

2021 ◽  
Author(s):  
Juliana Lopez-Angarita ◽  
Alexander Tilley ◽  
Juan M Diaz

The role of mangroves as pivotal providers of ecosystem services has been widely acknowledged. In Latin America, mangroves play an important role in traditional coastal livelihoods, but the growing economy of these nations demands the expansion of land for development, putting pressure in ecosystems such as mangroves. Here we examine the impact of land use activities on mangroves in the Gulf of Montijo, a RAMSAR site located in the Pacific coast of Panama. Spatial information of land use was analysed, ground-truthed and classified into agriculture, aquaculture and coastal development, and subsequently ranked according to estimated level of impact on mangroves based on 27 interviews with local informants. We developed a spatially-referenced cumulative impact model of human activities on mangroves. Results showed that despite the protection status of the Gulf of Montijo, its mangrove forests are affected by localised human activities, dominated by agriculture. Given the importance of fishing for local livelihoods, evaluating the effects of agriculture, rice in particular, on mangroves and their associated fauna will be essential for the sustainable management of this RAMSAR site.


Sign in / Sign up

Export Citation Format

Share Document