scholarly journals Marble Slurry’s Impact on Groundwater: The Case Study of the Apuan Alps Karst Aquifers

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2462 ◽  
Author(s):  
Leonardo Piccini ◽  
Tiziana Di Lorenzo ◽  
Pilario Costagliola ◽  
Diana Maria Paola Galassi

Modern sawing techniques employed in ornamental stones’ exploitation produce large amounts of slurry that can be potentially diffused into the environment by runoff water. Slurry produced by limestone and marble quarrying can impact local karst aquifers, negatively affecting the groundwater quality and generating a remarkable environmental and economic damage. A very representative case-study is that of the Apuan Alps (north-western Tuscany, Italy) because of the intensive marble quarrying activity. The Apuan Alps region extends over about 650 km2; it hosts several quarries, known all over the world for the quality of the marble extracted, and a karst aquifer producing about 70,000 m3/day of high-quality water used directly for domestic purposes almost without treatments. In addition, Apuan Alps are an extraordinary area of natural and cultural heritage hosting many caves (about 1200), karst springs and geosites of international and national interest. During intense rain events, carbonate slurry systematically reaches the karst springs, making them temporarily unsuitable for domestic uses. In addition, the deterioration of the water quality threatens all the hypogean fauna living in the caves. This paper provides preliminary insights of the hydrological and biological indicators that can offer information about the impact of the marble quarrying activities on groundwater resources, karst habitats and their biodiversity.

2021 ◽  
Author(s):  
Luka Vucinic ◽  
David O'Connell ◽  
Donata Dubber ◽  
Patrice Behan ◽  
Quentin Crowley ◽  
...  

<p>Lowland karst aquifers in Ireland are extremely complex to understand and are considered to be highly vulnerable to pollution (e.g. low-lying karst catchments exhibit a lot of surface water – groundwater interactions which makes them very susceptible to direct contamination). These aquifers are impacted by multiple contamination sources on land (in particular, rural sources from agriculture and on-site domestic wastewater effluent) which makes their protection and management challenging. Human wastewater effluent is identified as significant threat to groundwater quality in such lowland Irish karst environments, since approximately one-third of the population in Ireland is relying on decentralized wastewater treatment systems for the treatment of domestic wastewater. However, it is difficult to distinguish between human wastewater effluent and agricultural pollution impacts on karst aquifers using only traditional water quality parameters or any single environmental tracing method. Hence, the impact of microbial and chemical contaminants of human wastewater origin on groundwater quality must be assessed using a multiple-tracer approach, ideally targeting source-specific tracers. This paper presents an overview of the results obtained during the research conducted throughout the last several years at nine karst catchments in Ireland using a range of methodologies in order to determine and quantify domestic wastewater pollution impacts on karst springs. Microbial pollution was assessed using flow cytometric fingerprinting and faecal indicator bacteria, while chemical pollution impact assessment included the analysis of fluorescent whitening compounds (FWCs; well-known indicators of human contamination since their origin is mostly from laundry detergents), specific anion ratio signatures (Cl/Br), quantification and identification of microplastic particles using Fourier-transform infrared spectroscopy (FTIR), and faecal sterol and stanol profiles and ratios. A thorough analysis of the results obtained using a multiple-tracer approach has been conducted and methodologies have been evaluated in terms of applicability and sensitivity in a range of different karst catchments. The ability of these methodologies and techniques to determine and quantify human faecal pollution impacts on karst springs will be discussed. The results show a significant correlation between microplastic particle counts and detected FWCs signals at different springs, which helps to understand the contribution of household-derived contaminants to this environmental problem. Moreover, our results indicate that faecal sterols and stanols can be useful faecal source tracking method in karst aquifer systems despite the fact that concentrations of sterols and stanols of interest were usually low which makes the interpretation of results challenging.</p>


2022 ◽  
Author(s):  
Fatemeh Geravand ◽  
Seiyed Mossa Hosseini ◽  
Mehran Maghsoudi ◽  
Mojtaba Yamani

Abstract Karst groundwater resources in the Zagros Mountains are vital for supplying of different demands in the region which need to sustainable management and protection. Quantitative and qualitative characterization of karst aquifers in this region were understudied due to lack of site-specific logging-data and speleological investigations. In this study, a state-of-the-art of the statistical methods developed to characterize karst aquifer based on analyses of the spring recession hydrograph and spring water quality are presented. These methods including Manging’s method for classification of karst aquifers, relationships of precipitation and discharge data, groundwater quality index (GQI), hydrochemical diagrams (Piper, Durov and Gibbs), and Saturation index (SI), Chloro-Alkaline indices (CAI). 42 major karst springs mainly located in folded part of Zagros region (western Iran) are selected for application of the reviewed methods. Results indicated that the saturated zone exerts almost main control over the discharge of 76% of the studied springs. The base-flow contributes as between 80.0% to 100% of total water storage in the study aquifers. 78.5% of the studied aquifers have a high karstification degree. An insignificant lag-time is observed between the precipitation on the karst basin and spring discharge. The hydrochemical diagrams show that the waters are dominated by HCO3 and Ca and the majority of the waters are alkaline, with originate from silicate minerals weathering. Such repeatable methods adopted in this study can provide crucial information of the karst aquifers, especially those suffer scarcity of aquifer hydrodynamic data.


2006 ◽  
Vol 54 (6-7) ◽  
pp. 395-403 ◽  
Author(s):  
L. Wolf ◽  
J. Klinger ◽  
I. Held ◽  
H. Hötzl

The management of urban groundwater resources is directly linked to urban water supply and drainage concepts. A proper integration of groundwater into urban water management plans is recommended for long-term planning. The paper describes the development of a new modelling suite which addresses the urban water and solute balance in a holistic way. Special focus has been placed on the assessment of the impact of sewer leakage on groundwater in four case study cities. Tools for the prediction of sewer leakage including the assessment of uncertainties are now available. Field investigations in four European case study cities were able to trace the influence of sewer leakage on urban groundwater using microbiological indicators and pharmaceutical residues.


Author(s):  
Letizia Fumagalli ◽  
Gennaro Alberto Stefania ◽  
Chiara Zanotti ◽  
Davide Sartirana ◽  
Giuseppe Raffaello Di Martino ◽  
...  

This work aims at assessing the impact on groundwater resources of a leachate overflow occurred in the landfill of Vizzolo-Predabissi (Milan, Italy) after its closure. Hydrogeological sections, piezometric maps, spatio-temporal and multivariate analysis of hydrochemical data enabled to define a conceptual model and to build a groundwater flow model, solved and calibrated by means of MODFLOW-NWT and PEST. The results of the study pointed out that the leachate overflow produced an impulsive contamination, currently in attenuation, which behaved differently in areas with different redox characteristics.


2021 ◽  
Vol 57 (1) ◽  
pp. 23
Author(s):  
Konstantinos S. Voudouris

Karst groundwater is an important natural resource for the water supply. The karst aquifer systems of Greece are developed within carbonate sedimentary (limestone, dolomite) and metamorphic rocks (marbles) and contribute significantly to water supply for domestic and irrigation use. They are discharged through springs: submarine, coastal brackish and inland freshwater springs. This review presents the general characteristics of karst aquifers focusing on hydraulic properties. Evaluation of the results shows that the hydraulic parameters of the karstic aquifer systems range within a large scale of values depending on karstification, tectonics and stratigraphy. High values of transmissivity and specific capacity are recorded in the upper stratigraphically levels of the karstic aquifer systems. In addition, a total of 229 different karst systems were classified according to five criteria: 1) Lithology, 2) Position, 3) Quality status, 4) Exploitation and quantitative status and 5) Discharge of springs. The majority (80%) of karst systems is developed in sedimentary rocks (limestones) and is of good water quality and quantitative status. Poor water quality status is recorded in coastal karst aquifers (mainly on islands) due to seawater intrusion phenomena. Finally, this work summarizes the characteristics of the karst aquifers in Greece in order to ensure the sustainable management of groundwater resources.


2020 ◽  
Author(s):  
Luka Vucinic ◽  
David O'Connell ◽  
Donata Dubber ◽  
Patrice Behan ◽  
Quentin Crowley ◽  
...  

<p>Karst aquifers are exceptionally vulnerable to pollution and may be impacted by multiple contamination sources. In rural and suburban areas, human wastewater effluent from on-site domestic wastewater treatment systems (DWTSs) and agricultural sources are the most significant threats to groundwater quality. It has been estimated that around 2.8 billion people worldwide rely on DWTSs for treating domestic wastewater. As karst groundwater is a major source of drinking water for at least one-quarter of the world’s population it makes protection and management of karst aquifers extremely important. These aquifer systems are highly complex and challenging to understand, especially with regards to the fate and transport of contaminants through such systems. Thus, significant knowledge gaps exist with respect to linking contaminants with the origins of pollution and quantifying different pollution impacts on groundwater quality in karst environments.</p><p>In this paper, a novel approach for investigation of the impact of contaminants from DWTS effluent on rural karstified aquifers using a range of source-specific tracers is proposed, as it is extremely difficult to distinguish between agricultural and DWTS effluent pollution using only traditional water quality parameters or any single environmental marker. Domestic wastewater is primarily discharged from toilets, washing machines, showers and dishwashers, but even after on-site wastewater treatment processes a large number of different contaminants, including source-specific ones, can still reach the groundwater and wider environment. One example are microplastic particles which are found with other solid materials in the wastewater effluent principally due to household washing and cleaning processes. Investigations of microplastic occurrences in groundwater systems are very rare but several karst springs in the west of Ireland have been sampled during this study for quantification and identification of microplastic particles using Fourier-transform infrared spectroscopy (FTIR). Many of these particles were successfully linked to human wastewater on the basis of their physical and chemical properties and/or adsorbed/absorbed pollutants. The overall numbers of microplastics and numbers of household-derived microplastic particles were linked to other well-known indicators of human contamination such as fluorescent whitening compounds (FWCs) and specific anion ratio signatures (Cl:Br). Our results show a significant correlation between microplastics and detected FWC signals at different karst springs over time, which suggests the majority of found microplastic particles to be from DWTS effluent. Notably, certain limitations were found and furthermore understood in terms of the capability of Cl:Br ratio method in determining human wastewater impacts on karst groundwater. Additionally, we have found that faecal sterol and stanol concentrations, as source-specific faecal markers, and their ratios can very successfully differentiate and quantify DWTS effluent pollution and agricultural faecal contamination at karst springs due to rapid and extensive transport of these contaminants particularly through the karst conduit networks. </p>


2020 ◽  
Vol 10 (5) ◽  
pp. 1882 ◽  
Author(s):  
Silvia Iacurto ◽  
Gerardo Grelle ◽  
Francesco Maria De Filippi ◽  
Giuseppe Sappa

Karst aquifer recharge areas are usually difficult to identify because of the complexity of these aquifers’ characteristics. On the other hand, their identification is very important in the aim of protecting the groundwater resources that these aquifers host. Regarding this topic, this paper presents an approach aimed at identifying karst aquifer recharge areas by the application of oxygen-18 and deuterium isotopes composition of groundwater coupled with hydrological features. Oxygen-18 and deuterium isotope composition of Capodacqua di Spigno Spring, in the South of the Latium Region, has been applied with rainfall and discharge values related to the feeding aquifer of this spring. As δ18O and δ2H values of groundwater samples are natural tracers of the recharge area’s elevation, we propose a model, based on the distribution of the basin surfaces involved as recharge areas, in relation to elevations. The model estimates, for any discharge value, the percentage of the topographic area involved in the aquifer recharge. The setting up of this simulated distribution is supported by a Weibull cumulative probability function. The results show that the measured discharges increase as larger areas with lower elevations are involved in the recharge process.


Sign in / Sign up

Export Citation Format

Share Document