scholarly journals Effects of Distinct Revegetation Methods on Growth and Microbial Properties of Vallisneria natans

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1294
Author(s):  
Ning Wang ◽  
Qi Li ◽  
Mengqi Jiang ◽  
Weizhen Zhang ◽  
Hao Zhang ◽  
...  

This study investigated the effects of the mud-sinking (MS) method, agar gel-sinking (AS) method and agar gel-sinking with artificial aquatic mat (ASA) method on the growth, physiological characteristics, water purification capacity, and associated microbial community of the different organs of Vallisneria natans (V. natans). Results showed that the growth of agar-based growth (group AS and ASA) were more effective than the mud-wrapped method (group MS), exhibiting longer length, higher fresh weight and biomass of agar-based V. natans with the artificial aquatic mat (group ASA) being higher than those of other groups. MS caused a stress response in the oxidative system, which then inhibited photosynthesis. Results of water quality measurements showed that the three planting methods positively affected water purification without significant differences (p > 0.05). Besides, there was no significant difference (p > 0.05) between the microbial communities in terms of the roots and those found in rhizosphere soils in the MS group with high throughput sequencing. Meanwhile, the addition of agar in the AS and ASA groups increased the diversity of rhizosphere soil microbial communities and reduced the diversity of root microbial communities. Microbial community compositions in the rhizosphere soil and root differed significantly (p < 0.05). High throughput sequencing and scanning electron microscopy (SEM) also revealed that the biofilm on the surfaces were different, with Proteobacteria and Cyanophyta consistently dominating. This study provides new insights on the more effective revegetation methods of V. natans, researched the environmental impact of the addition of agar, and provides some theoretical support for the revegetation of submerged macrophytes under ecological restoration.

Author(s):  
Jane Oja ◽  
Sakeenah Adenan ◽  
Abdel-Fattah Talaat ◽  
Juha Alatalo

A broad diversity of microorganisms can be found in soil, where they are essential for nutrient cycling and energy transfer. Recent high-throughput sequencing methods have greatly advanced our knowledge about how soil, climate and vegetation variables structure the composition of microbial communities in many world regions. However, we are lacking information from several regions in the world, e.g. Middle-East. We have collected soil from 19 different habitat types for studying the diversity and composition of soil microbial communities (both fungi and bacteria) in Qatar and determining which edaphic parameters exert the strongest influences on these communities. Preliminary results indicate that in overall bacteria are more abundant in soil than fungi and few sites have notably higher abundance of these microbes. In addition, we have detected some soil patameters, which tend to have reduced the overall fungal abundance and enhanced the presence of arbuscular mycorrhizal fungi and N-fixing bacteria. More detailed information on the diversity and composition of soil microbial communities is expected from the high-throughput sequenced data.


2020 ◽  
Author(s):  
Haiying Lei ◽  
Ake Liu ◽  
Qinwen Hou ◽  
Qingsong Zhao ◽  
Jia Guo ◽  
...  

Abstract Background: Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated.Results: In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens. As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples.Conclusions: Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 951
Author(s):  
Liguo Song ◽  
Lingyu Hou ◽  
Yongqiang Zhang ◽  
Zhichao Li ◽  
Wenzheng Wang ◽  
...  

Biochar is a promising material for the improvement of soil quality. However, studies on biochar have mostly been carried out in laboratory conditions or have focused on agricultural aspects. The impacts of the application of biochar on soil characteristics and related ecological processes of the forest ecosystem have not been fully resolved. In this study, we investigated the effects of regular biochar and bacteria-loaded biochar on the microbial communities in the bulk soil and the rhizosphere soil of an annual Chinese fir plantation. In early spring (April), the two types of biochar were added to the soil at the rates of 2.22 t·ha−1, 4.44 t·ha−1, 6.67 t·ha−1, 8.89 t·ha−1, and 11.11 t·ha−1 by ring furrow application around the seedlings, and soil samples were collected at the end of autumn (November). The results showed that biochar addition increased the soil nutrient content and promoted the growth and diversity of soil microbial communities. The diversity of soil fungi was significantly increased, and the diversity of soil bacteria was significantly decreased. Principal component analysis under the different biochar types and application rates demonstrated that microbial communities differed significantly between the treatments and controls and that the effect of biochar on the microbial community of the bulk soil was more significant than that of the rhizosphere soil. Under the same dosage, the effect of bacteria-loaded biochar on soil was more significant than that of regular biochar.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yan Zhao ◽  
Kun Li ◽  
Houqiang Luo ◽  
Longchuan Duan ◽  
Caixia Wei ◽  
...  

Birds are an important source of fecal contamination in environment. Many of diseases are spread through water contamination caused by poultry droppings. A study was conducted to compare the intestinal microbial structure of Shaoxing ducks with and without water. Thirty 1-day-old Shaoxing ducks (Qingke No. 3) were randomly divided into two groups; one group had free access to water (CC), while the other one was restricted from water (CT). After 8 months of breeding, caecal samples of 10 birds from each group were obtained on ice for high-throughput sequencing. A total of 1507978 valid sequences were examined and clustered into 1815 operational taxonomic units (OTUs). At phylum level, Firmicutes (41.37%), Bacteroidetes (33.26%), Proteobacteria (13.67%), and Actinobacteria (8.26%) were found to dominate the microbial community in CC birds, while Firmicutes (53.62%), Bacteroidetes (33.06%), and Actinobacteria (11.13%) were uncovered to be the prime phyla in CT ducks. At genus level, Bacteroides (25.02%), Escherichia-Shigella (11.02%), Peptococcus (7.73%) and Parabacteroides (5.86%) were revealed to be the mainly genera in the CC group ducks, while Bacteroides (18.11%), Erysipelatoclostridium (10.94%), Ruminococcaceae_unclassified (10.43%), Lachnospiraceae_unclassified (5.26%), Coriobacteriales_unclassified (5.89%), and Faecalibacterium (4.2%) were detected to staple the microbial flora in the CT birds. One phylum and 13 genera were found to have the significant difference between the two bird groups (p<0.05). At phylum level, Proteobacteria in CT ducks were found to be obviously lower than ducks in CC birds (p<0.05). At genus level, Escherichia-Shigella (p<0.05) and Peptococcus (p<0.05) were found to be notably lower in CT birds, while Erysipelatoclostridium (p<0.05), Ruminococcaceae_unclassified (p<0.01), Coriobacteriales_unclassified (p<0.05), Faecalibacterium (p<0.01), Atopobiaceae_unclassified (p<0.01), Alistipes (p<0.05), Eggerthellaceae_unclassified (p<0.05), Prevotella_7 (<0.05), Rikenellaceae_RC9_gut_group (p<0.05), Prevotellaceae_uncultured (p<0.05), and Shuttleworthia (p<0.05) were observed to be prominently higher in CT ducks. In conclusion, the present study revealed the effects of keeping ducks away from swimming with obvious changes in the microbial community. Though higher microbial richness was found in the ducks without swimming, more pathogenic genera including Eggerthella, Erysipelatoclostridium, Alistipes, Prevotella_7, and Shuttleworthia; zoonotic genera including Eggerthella and Shuttleworthia; inflammatory genus Alistipes; anti-inflammatory Faecalibacterium genus; and tumor genus Rikenellaceae were examined in these ducks. The CT ducks also showed significant changes at genera level regarding the metabolism (Peptococcus, Ruminococcaceae, and Coriobacteriales).


2020 ◽  
Author(s):  
Haiying Lei ◽  
Ake Liu ◽  
Qingsong Zhao ◽  
Qinwen Hou ◽  
Jia Guo ◽  
...  

Abstract Background: Continuous monocropping can affect the physicochemical and biological characteristics of cultivated soil. Sophora flavescens is a valuable herbal medicine and sensitive to continuous monocropping. Currently, diversity patterns of soil microbial communities in soil continuous monocropping with S. flavescens have not been extensively elucidated. Results: In this study, comparative 16S rDNA and internal transcribed spacer (ITS) MiSeq sequencing analyses were used to examine the taxonomic community structure and microbial diversity in nonrhizosphere soil (CK) and rhizosphere soils (SCC, TCC, and FCC) sampled from fields that had undergone two, three, and five years of continuous monocropping, respectively. Among the microbial communities, a decreased abundance of Acidobacteria and increased abundances of Proteobacteria and Bacteroidetes were found with the increase in monocropping years of S. flavescens . As the continuous monocropping time increased, the diversity of the bacterial community decreased, but that of fungi increased. Redundancy analysis also showed that among the properties of the rhizosphere soil, the available phosphorus, organic matter, total nitrogen, and sucrase had the greatest impacts on the diversity of the rhizosphere microbial community. Moreover, a biomarker for S. flavescens soil was also identified using the most differentially abundant bacteria and fungi in soil samples. Conclusions: Our study indicates that long-term monocropping exerted great impacts on microbial community distributions and soil physicochemical properties. The relationship between microbial community and physicochemical properties of rhizosphere soil would help clarify the side effects of continuous S. flavescens monocropping. Our study may aid in uncovering the theoretical basis underlying obstacles to continuous monocropping and provide better guidance for crop production.


2021 ◽  
Author(s):  
Yuan He ◽  
Xinrong Ma ◽  
Xin-Yi Hou ◽  
Cai-Xia Li ◽  
Yan Wang

Abstract Titanium ions can significantly promote plant growth, but it is unclear whether the application of titanium ions to plants has any effect on the soil microbial community. In this study, we conducted field surveys to determine the effect of titanium ions on soil microbial communities of the pitaya and grape plantations in Panxi area by performing full-length 16S rRNA gene and ITS amplicon sequencing using PacBio Sequel. The results showed that the application of titanium ions significantly altered the composition and structure of soil microbiota. Root irrigation with titanium ions in pitaya garden, the diversity of soil fungi was significantly reduced. Although there was no statistically significant difference, bacterial diversity also declined. While, the foliar spray of titanium ions on grapes greatly reduced the soil microbial diversity. Moreover, the soil microbiota had a core of conserved taxa, and their relative abundances were significantly altered by titanium ions. Moreover, titanium ions enhanced the cooccurrence relationships and probably improved the stability of the soil microbial community. Our results highlight the different responses of bacterial and fungal communities to titanium ions and sites and provides a basis for the application of titanium ions in plant farming.


2002 ◽  
Vol 68 (6) ◽  
pp. 3055-3066 ◽  
Author(s):  
Janet E. Hill ◽  
Robyn P. Seipp ◽  
Martin Betts ◽  
Lindsay Hawkins ◽  
Andrew G. Van Kessel ◽  
...  

ABSTRACT Complex microbial communities remain poorly characterized despite their ubiquity and importance to human and animal health, agriculture, and industry. Attempts to describe microbial communities by either traditional microbiological methods or molecular methods have been limited in both scale and precision. The availability of genomics technologies offers an unprecedented opportunity to conduct more comprehensive characterizations of microbial communities. Here we describe the application of an established molecular diagnostic method based on the chaperonin-60 sequence, in combination with high-throughput sequencing, to the profiling of a microbial community: the pig intestinal microbial community. Four libraries of cloned cpn60 sequences were generated by two genomic DNA extraction procedures in combination with two PCR protocols. A total of 1,125 cloned cpn60 sequences from the four libraries were sequenced. Among the 1,125 cloned cpn60 sequences, we identified 398 different nucleotide sequences encoding 280 unique peptide sequences. Pairwise comparisons of the 398 unique nucleotide sequences revealed a high degree of sequence diversity within the library. Identification of the likely taxonomic origins of cloned sequences ranged from imprecise, with clones assigned to a taxonomic subclass, to precise, for cloned sequences with 100% DNA sequence identity with a species in our reference database. The compositions of the four libraries were compared and differences related to library construction parameters were observed. Our results indicate that this method is an alternative to 16S rRNA sequence-based studies which can be scaled up for the purpose of performing a potentially comprehensive assessment of a given microbial community or for comparative studies.


Sign in / Sign up

Export Citation Format

Share Document