scholarly journals Nitrifying and Denitrifying Microbial Communities in Centralized and Decentralized Biological Nitrogen Removing Wastewater Treatment Systems

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1688 ◽  
Author(s):  
Sara K. Wigginton ◽  
Elizabeth Q. Brannon ◽  
Patrick J. Kearns ◽  
Brittany V. Lancellotti ◽  
Alissa Cox ◽  
...  

Biological nitrogen removal (BNR) in centralized and decentralized wastewater treatment systems is assumed to be driven by the same microbial processes and to have communities with a similar composition and structure. There is, however, little information to support these assumptions, which may impact the effectiveness of decentralized systems. We used high-throughput sequencing to compare the structure and composition of the nitrifying and denitrifying bacterial communities of nine onsite wastewater treatment systems (OWTS) and one wastewater treatment plant (WTP) by targeting the genes coding for ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ). The amoA diversity was similar between the WTP and OWTS, but nosZ diversity was generally higher for the WTP. Beta diversity analyses showed the WTP and OWTS promoted distinct amoA and nosZ communities, although there is a core group of N-transforming bacteria common across scales of BNR treatment. Our results suggest that advanced N-removal OWTS have microbial communities that are sufficiently distinct from those of WTP with BNR, which may warrant different management approaches.

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2413 ◽  
Author(s):  
Bianca N. Ross ◽  
Sara K. Wigginton ◽  
Alissa H. Cox ◽  
George W. Loomis ◽  
Jose A. Amador

Advanced onsite wastewater treatment systems (OWTS) use biological nitrogen removal (BNR) to mitigate the threat that N-rich wastewater poses to coastal waterbodies and groundwater. These systems lower the N concentration of effluent via sequential microbial nitrification and denitrification. We used high-throughput sequencing to evaluate the structure and composition of nitrifying and denitrifying bacterial communities in advanced N-removal OWTS, targeting the genes encoding ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) present in effluent from 44 advanced systems. We used QIIME2 and the phyloseq package in R to examine differences in taxonomy and alpha and beta diversity as a function of advanced OWTS technology, occupancy pattern (seasonal vs. year-round use), and season (June vs. September). Richness and Shannon’s diversity index for amoA were significantly influenced by season, whereas technology influenced nosZ diversity significantly. Season also had a strong influence on differences in beta diversity among amoA communities, and had less influence on nosZ communities, whereas technology had a stronger influence on nosZ communities. Nitrosospira and Nitrosomonas were the main genera of nitrifiers in advanced N-removal OWTS, and the predominant genera of denitrifiers included Zoogloea, Thauera, and Acidovorax. Differences in taxonomy for each gene generally mirrored those observed in diversity patterns, highlighting the possible importance of season and technology in shaping communities of amoA and nosZ, respectively. Knowledge gained from this study may be useful in understanding the connections between microbial communities and OWTS performance and may help manage systems in a way that maximizes N removal.


2007 ◽  
Vol 56 (7) ◽  
pp. 21-31 ◽  
Author(s):  
D. Brdjanovic ◽  
M. Mithaiwala ◽  
M.S. Moussa ◽  
G. Amy ◽  
M.C.M. van Loosdrecht

This paper presents results of a novel application of coupling the Activated Sludge Model No. 3 (ASM3) and the Anaerobic Digestion Model No.1 (ADM1) to assess a tropical wastewater treatment plant in a developing country (Surat, India). In general, the coupled model was very capable of predicting current plant operation. The model proved to be a useful tool in investigating various scenarios for optimising treatment performance under present conditions and examination of upgrade options to meet stricter and upcoming effluent discharge criteria regarding N removal. It appears that use of plant-wide modelling of wastewater treatment plants is a promising approach towards addressing often complex interactions within the plant itself. It can also create an enabling environment for the implementations of the novel side processes for treatment of nutrient-rich, side-streams (reject water) from sludge treatment.


2016 ◽  
pp. 59-114 ◽  
Author(s):  
Jashan Gokal ◽  
Oluyemi Olatunji Awolusi ◽  
Abimbola Motunrayo Enitan ◽  
Sheena Kumari ◽  
Faizal Bux

2019 ◽  
Author(s):  
María Victoria Pérez ◽  
Leandro D. Guerrero ◽  
Esteban Orellana ◽  
Eva L. Figuerola ◽  
Leonardo Erijman

ABSTRACTUnderstanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of three years, including a period of nine month of disturbance, characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons and thein situgrowth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the ribosomal RNA (rrn) operon. Despite only moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, as the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions.IMPORTANCEIn this work we investigated the response of microbial communities to disturbances in a full-scale activated sludge wastewater treatment plant over a time-scale that included periods of stability and disturbance. We performed a genome-wide analysis, which allowed us the direct estimation of specific cellular traits, including the rRNA operon copy number and the in situ growth rate of bacteria. This work builds upon recent efforts to incorporate growth efficiency for the understanding of the physiological and ecological processes shaping microbial communities in nature. We found evidence that would suggest that activated sludge could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions. This paper provides relevant insights into wastewater treatment process, and may also reveal a key role for growth traits in the adaptive response of bacteria to unsteady environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document