scholarly journals Hydrologic Assessment of TRMM and GPM-Based Precipitation Products in Transboundary River Catchment (Chenab River, Pakistan)

Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1902 ◽  
Author(s):  
Ehtesham Ahmed ◽  
Firas Al Janabi ◽  
Jin Zhang ◽  
Wenyu Yang ◽  
Naeem Saddique ◽  
...  

Water resources planning and management depend on the quality of climatic data, particularly rainfall data, for reliable hydrological modeling. This can be very problematic in transboundary rivers with limited disclosing of data among the riparian countries. Satellite precipitation products are recognized as a promising source to substitute the ground-based observations in these conditions. This research aims to assess the feasibility of using a satellite-based precipitation product for better hydrological modeling in an ungauged and riparian river in Pakistan, i.e., the Chenab River. A semidistributed hydrological model of The soil and water assessment tool (SWAT) was set up and two renowned satellite precipitation products, i.e., global precipitation mission (GPM) IMERG-F v6 and tropical rainfall measuring mission (TRMM) 3B42 v7, were selected to assess the runoff pattern in Chenab River. The calibration was done from 2001–2006 with two years of a warmup period. The validation (2007–2010) results exhibit higher correlation between observed and simulated discharges at monthly timescale simulations, IMERG-F (R2 = 0.89, NSE = 0.82), 3B42 (R2 = 0.85, NSE = 0.72), rather than daily timescale simulations, IMERG-F (R2 = 0.66, NSE = 0.61), 3B42 (R2 = 0.64, NSE = 0.54). Moreover, the comparison between IMERG-F and 3B42, shows that IMERG-F is superior to 3B42 by indicating higher R2, NSE and lower percent bias (PBIAS) at both monthly and daily timescale. The results are strengthened by Taylor diagram statistics, which represent a higher correlation (R) and less RMS error between observed and simulated values for IMERG-F. IMERG-F has great potential utility in the Chenab River catchment as it outperformed the 3B42 precipitation in this study. However, its poor skill of capturing peaks at daily timescale remains, leaving a room for IMERG-F to improve its algorithm in the upcoming release.

2021 ◽  
Vol 13 (2) ◽  
pp. 221
Author(s):  
Jiabin Peng ◽  
Tie Liu ◽  
Yue Huang ◽  
Yunan Ling ◽  
Zhengyang Li ◽  
...  

Hydrological modeling has always been a challenge in the data-scarce watershed, especially in the areas with complex terrain conditions like the inland river basin in Central Asia. Taking Bosten Lake Basin in Northwest China as an example, the accuracy and the hydrological applicability of satellite-based precipitation datasets were evaluated. The gauge-adjusted version of six widely used datasets was adopted; namely, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks–Climate Data Record (CDR), Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), Global Precipitation Measurement Ground Validation National Oceanic and Atmospheric Administration Climate Prediction Center (NOAA CPC) Morphing Technique (CMORPH), Integrated Multi-Satellite Retrievals for GPM (GPM), Global Satellite Mapping of Precipitation (GSMaP), the Tropical Rainfall Measuring Mission (TRMM) and Multi-satellite Precipitation Analysis (TMPA). Seven evaluation indexes were used to compare the station data and satellite datasets, the soil and water assessment tool (SWAT) model, and four indexes were used to evaluate the hydrological performance. The main results were as follows: (1) The GPM and CDR were the best datasets for the daily scale and monthly scale rainfall accuracy evaluations, respectively. (2) The performance of CDR and GPM was more stable than others at different locations in a watershed, and all datasets tended to perform better in the humid regions. (3) All datasets tended to perform better in the summer of a year, while the CDR and CHIRPS performed well in winter compare to other datasets. (4) The raw data of CDR and CMORPH performed better than others in monthly runoff simulations, especially CDR. (5) Integrating the hydrological performance of the uncorrected and corrected data, all datasets have the potential to provide valuable input data in hydrological modeling. This study is expected to provide a reference for the hydrological and meteorological application of satellite precipitation datasets in Central Asia or even the whole temperate zone.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2571
Author(s):  
Jhones da S. Amorim ◽  
Marcelo R. Viola ◽  
Rubens Junqueira ◽  
Vinicius A. de Oliveira ◽  
Carlos R. de Mello

This study investigates the applicability of Satellite Precipitation Products (SPPs) in streamflow simulations performed in the Brazilian Cerrado biome, which is one of the world’s biodiversity hotspots. Local data from ground observations were used as a reference for evaluating the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG). The Soil and Water Assessment Tool (SWAT) was used to simulate the streamflow in a subbasin of the Tocantins river basin. Statistical precision metrics showed that both SPPs presented a satisfactory performance for precipitation monitoring on a monthly scale, in which IMERG performed better than TMPA. The Nash–Sutcliff coefficient and Kling–Gupta efficiency obtained for both calibration and validation period were greater than 0.82 and 0.79, respectively, demonstrating that both SPPs were able to simulate the hydrological regime adequately. However, the bias indicated that the SPPs overestimated the observed streamflow. The r-factor and p-factor values showed that both TMPA and IMERG presented low uncertainty in streamflow simulations. SPPs offer a great alternative for monitoring the precipitation and hydrological studies in the Brazilian Cerrado biome, and presented better simulation results than rain gauges.


2020 ◽  
Vol 12 (19) ◽  
pp. 3133
Author(s):  
Lu Zhang ◽  
Zhuohang Xin ◽  
Huicheng Zhou

Recent developments of satellite precipitation products provide an unprecedented opportunity for better precipitation estimation, and thus broaden hydrological application. However, due to the errors and uncertainties of satellite products, a thorough validation is usually required before putting into the real hydrological application. As such, this study aims to provide a comprehensive evaluation on the performances of Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA) 3B42V7 and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), as well as their adequacies in simulating hydrological processes in a semi-humid region in the northeastern China. It was found that TMPA 3B42V7 showed a superior performance at the daily and monthly time scales, and had a favorable capture of the rainfall-intensity distribution. Intra-annual comparisons indicated a better representation of TMPA 3B42V7 from January to September, whereas PERSIANN-CDR was more reliable from October to December. The Soil and Water Assessment Tool (SWAT) driven by gauge precipitation data performed excellently with NSE > 0.9, while the performances of TMPA 3B42V7- and PERSIANN-CDR-based models are satisfactory with NSE > 0.5. The performances varied under different flow levels and hydrological years. Water balance analysis indicated a better performance of TMPA 3B42V7 in simulating the hydrological processes, including evapotranspiration, groundwater recharge and total runoff. The runoff compositions (i.e., base flow, subsurface flow, and surface flow) driven by TMPA 3B42V7 were more accordant with the actual hydrological features. This study will not only help recognize the potential satellite precipitation products for local water resources management, but also be a reference for the poor-gauged regions with similar hydrologic and climatic conditions around the world, especially the northeastern China and western Russia.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1803
Author(s):  
Xiaoli Chen ◽  
Guoru Huang

The assessment of various precipitation products’ performances in extreme climatic conditions has become a topic of interest. However, little attention has been paid to the hydrological substitutability of these products. The objective of this study is to explore the performance of the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) product in the Feilaixia catchment, China. To assess its applicability in extreme consecutive climates, several statistical indices are adopted to evaluate the TMPA performance both qualitatively and quantitatively. The Cox–Stuart test is used to investigate extreme climate trends. The Soil and Water Assessment Tool (SWAT) model is used to test the TMPA hydrological substitutability via three scenarios of runoff simulation. The results demonstrate that the overall TMPA performance is acceptable, except at high-latitudes and locations where the terrain changes greatly. Moreover, the accuracy of the SWAT model is high both in the semi-substitution and full-substitution scenarios. Based on the results, the TMPA product is a useful substitute for the gauged precipitation in obtaining acceptable hydrologic process information in areas where gauged sites are sparse or non-existent. The TMPA product is satisfactory in predicting the runoff process. Overall, it must be used with caution, especially at high latitudes and altitudes.


2010 ◽  
Vol 11 (4) ◽  
pp. 966-978 ◽  
Author(s):  
Kenneth J. Tobin ◽  
Marvin E. Bennett

Abstract Significant concern has been expressed regarding the ability of satellite-based precipitation products such as the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 products (version 6) and the U.S. National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center’s (CPC) morphing technique (CMORPH) to accurately capture rainfall values over land. Problems exist in terms of bias, false-alarm rate (FAR), and probability of detection (POD), which vary greatly worldwide and over the conterminous United States (CONUS). This paper directly addresses these concerns by developing a methodology that adjusts existing TMPA products utilizing ground-based precipitation data. The approach is not a simple bias adjustment but a three-step process that transforms a satellite precipitation product. Ground-based precipitation is used to develop a filter eliminating FAR in the authors’ adjusted product. The probability distribution function (PDF) of the satellite-based product is adjusted to the PDF of the ground-based product, minimizing bias. Failure of precipitation detection (POD) is addressed by utilizing a ground-based product during these periods in their adjusted product. This methodology has been successfully applied in the hydrological modeling of the San Pedro basin in Arizona for a 3-yr time series, yielding excellent streamflow simulations at a daily time scale. The approach can be applied to any satellite precipitation product (i.e., TRMM 3B42 version 7) and will provide a useful approach to quantifying precipitation in regions with limited ground-based precipitation monitoring.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2400
Author(s):  
Thalli Mani Sharannya ◽  
Nadhir Al-Ansari ◽  
Surajit Deb Barma ◽  
Amai Mahesha

Precipitation obtained from rain gauges is an essential input for hydrological modelling. It is often sparse in highly topographically varying terrain, exhibiting a certain amount of uncertainty in hydrological modelling. Hence, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. In this study, an attempt was made to evaluate the Tropical Rainfall Measuring Mission (TRMM) and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), employing a semi-distributed hydrological model, i.e., Soil and Water Assessment Tool (SWAT), for simulating streamflow and validating them against the flows generated by the India Meteorological Department (IMD) rainfall dataset in the Gurupura river catchment of India. Distinct testing scenarios for simulating streamflow were made to check the suitability of these satellite precipitation data. The TRMM was able to better estimate rainfall than CHIRPS after performing categorical and continuous statistical results with respect to IMD rainfall data. While comparing the performance of model simulations, the IMD rainfall-driven streamflow emerged as the best followed by the TRMM, CHIRPS-0.05, and CHIRPS-0.25. The coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) were in the range 0.63 to 0.86, 0.62 to 0.86, and −14.98 to 0.87, respectively. Further, an attempt was made to examine the spatial distribution of key hydrological signature, i.e., flow duration curve (FDC) in the 30–95 percentile range of non-exceedance probability. It was observed that TRMM underestimated the flow for agricultural water availability corresponding to 30 percent, even though it showed a good performance compared to the other satellite rainfall-driven model outputs.


2021 ◽  
Vol 13 (13) ◽  
pp. 2630
Author(s):  
Yao Li ◽  
Wensheng Wang ◽  
Guoqing Wang ◽  
Siyi Yu

Precipitation is an essential driving factor of hydrological models. Its temporal and spatial resolution and reliability directly affect the accuracy of hydrological modeling. Acquiring accurate areal precipitation needs substantial ground rainfall stations in space. In many basins, ground rainfall stations are sparse and uneven, so real-time satellite precipitation products (SPPs) have become an important supplement to ground-gauged precipitation (GGP). A multi-source precipitation fusion method suitable for the Soil and Water Assessment Tool (SWAT) model has been proposed in this paper. First, the multivariate inverse distance similarity method (MIDSM) was proposed to search for the optimal representative precipitation points of GGP and SPPs in sub-basins. Subsequently, the correlation-coefficient-based weighted average method (CCBWA) was presented and applied to calculate the fused multi-source precipitation product (FMSPP), which combined GGP and multiple satellite precipitation products. The effectiveness of the FMSPP was proven over the Tuojiang River Basin. In the case study, three SPPs were chosen as the satellite precipitation sources, namely the Climate Forecast System Reanalysis (CFSR), Tropical Rainfall Measuring Mission Project (TRMM), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network Climate Data Record (PERSIANN-CDR). The evaluation indicators illustrated that FMSPP could capture the occurrence of rainfall events very well, with a maximum Probability of Detection (POD) and Critical Success Index (CSI) of 0.92 and 0.83, respectively. Furthermore, its correlation with GGP, changing in the range of 0.84–0.96, was higher in most sub-basins on the monthly scale than the other three SPPs. These results demonstrated that the performance of FMSPP was the best compared with the original SPPs. Finally, FMSPP was applied in the SWAT model and was found to effectively drive the SWAT model in contrast with a single precipitation source. The FMSPP manifested the highest accuracy in hydrological modeling, with the Coefficient of Determination (R2) of 0.84, Nash Sutcliff (NS) of 0.83, and Percent Bias (PBIAS) of only −1.9%.


2021 ◽  
Vol 9 (5) ◽  
pp. 467
Author(s):  
Mostafa Farrag ◽  
Gerald Corzo Perez ◽  
Dimitri Solomatine

Many grid-based spatial hydrological models suffer from the complexity of setting up a coherent spatial structure to calibrate such a complex, highly parameterized system. There are essential aspects of model-building to be taken into account: spatial resolution, the routing equation limitations, and calibration of spatial parameters, and their influence on modeling results, all are decisions that are often made without adequate analysis. In this research, an experimental analysis of grid discretization level, an analysis of processes integration, and the routing concepts are analyzed. The HBV-96 model is set up for each cell, and later on, cells are integrated into an interlinked modeling system (Hapi). The Jiboa River Basin in El Salvador is used as a case study. The first concept tested is the model structure temporal responses, which are highly linked to the runoff dynamics. By changing the runoff generation model description, we explore the responses to events. Two routing models are considered: Muskingum, which routes the runoff from each cell following the river network, and Maxbas, which routes the runoff directly to the outlet. The second concept is the spatial representation, where the model is built and tested for different spatial resolutions (500 m, 1 km, 2 km, and 4 km). The results show that the spatial sensitivity of the resolution is highly linked to the routing method, and it was found that routing sensitivity influenced the model performance more than the spatial discretization, and allowing for coarser discretization makes the model simpler and computationally faster. Slight performance improvement is gained by using different parameters’ values for each cell. It was found that the 2 km cell size corresponds to the least model error values. The proposed hydrological modeling codes have been published as open-source.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1313
Author(s):  
George Akoko ◽  
Tu Hoang Le ◽  
Takashi Gomi ◽  
Tasuku Kato

The soil and water assessment tool (SWAT) is a well-known hydrological modeling tool that has been applied in various hydrologic and environmental simulations. A total of 206 studies over a 15-year period (2005–2019) were identified from various peer-reviewed scientific journals listed on the SWAT website database, which is supported by the Centre for Agricultural and Rural Development (CARD). These studies were categorized into five areas, namely applications considering: water resources and streamflow, erosion and sedimentation, land-use management and agricultural-related contexts, climate-change contexts, and model parameterization and dataset inputs. Water resources studies were applied to understand hydrological processes and responses in various river basins. Land-use and agriculture-related context studies mainly analyzed impacts and mitigation measures on the environment and provided insights into better environmental management. Erosion and sedimentation studies using the SWAT model were done to quantify sediment yield and evaluate soil conservation measures. Climate-change context studies mainly demonstrated streamflow sensitivity to weather changes. The model parameterization studies highlighted parameter selection in streamflow analysis, model improvements, and basin scale calibrations. Dataset inputs mainly compared simulations with rain-gauge and global rainfall data sources. The challenges and advantages of the SWAT model’s applications, which range from data availability and prediction uncertainties to the model’s capability in various applications, are highlighted. Discussions on considerations for future simulations such as data sharing, and potential for better future analysis are also highlighted. Increased efforts in local data availability and a multidimensional approach in future simulations are recommended.


Sign in / Sign up

Export Citation Format

Share Document