scholarly journals Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2173 ◽  
Author(s):  
Fabrizio Antonioli ◽  
Giovanni De Falco ◽  
Valeria Lo Presti ◽  
Lorenzo Moretti ◽  
Giovanni Scardino ◽  
...  

The coasts of the Mediterranean Sea are dynamic habitats in which human activities have been conducted for centuries and which feature micro-tidal environments with about 0.40 m of range. For this reason, human settlements are still concentrated along a narrow coastline strip, where any change in the sea level and coastal dynamics may impact anthropic activities. In the frame of the RITMARE and the Copernicus Projects, we analyzed light detection and ranging (LiDAR) and Copernicus Earth Observation data to provide estimates of potential marine submersion for 2100 for 16 small-sized coastal plains located in the Italian peninsula and four Mediterranean countries (France, Spain, Tunisia, Cyprus) all characterized by different geological, tectonic and morphological features. The objective of this multidisciplinary study is to provide the first maps of sea-level rise scenarios for 2100 for the IPCC RCP 8.5 and Rahmstorf (2007) projections for the above affected coastal zones, which are the locations of touristic resorts, railways, airports and heritage sites. On the basis of our model (eustatic projection for 2100, glaciohydrostasy values and tectonic vertical movement), we provide 16 high-definition submersion maps. We estimated a potential loss of land for the above areas of between about 148 km2 (IPCC-RCP8.5 scenario) and 192 km2 (Rahmstorf scenario), along a coastline length of about 400 km.

2006 ◽  
Vol 177 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Ludovic Mocochain ◽  
Georges Clauzon ◽  
Jean-Yves Bigot

Abstract The Messinian salinity crisis is typically recorded by evaporites in the abyssal plains of the Mediterranean Sea and by canyons incised into the Mediterranean margins and their hinterlands. However, the impacts of crisis on geomorphology and surface dynamics lasted, until canyons were filled by sediments in the Pliocene (fig. 2). In the mid-Rhône valley, the Ardeche Cretaceous carbonate platform is incised over 600 m by the Rhône Messinian canyon. The canyon thalweg is located – 236 m bsl (below sea level) in the borehole of Pierrelatte [Demarcq, 1960; fig. 1]. During the Pliocene, this canyon was flooded as a ria and infilled by a Gilbert type fan delta [Clauzon and Rubino, 1992; Clauzon et al., 1995]. The whole Messinian-Pliocene third order cycle [Haq et al., 1987] generated four benchmark levels. The first two are [Clauzon, 1996]: (i) The pre-evaporitic abandonment surface which is mapped around the belvedere of Saint-Restitut (fig. 1). This surface is synchronous [Clauzon, 1996] of the crisis onset (5.95 Ma) [Gautier et al., 1994; Krigjsman et al., 1999] and, consequently, is an isochronous benchmark. (ii) The Messinian erosional surface is also an isochronous benchmark due to the fast flooding [Blanc, 2002] of the Rhône canyon, becoming a ria at 5.32 Ma [Hilgen and Langereis, 1988]. These surfaces are the result of endoreic Mediterranean sea level fall more than a thousand meters below the Atlantic Ocean. A huge accommodation space (up to more than 1000 m) was created as sea-level rose up to 80 m above its present-day level (asl) during the Pliocene highstand of cycle TB 3.4 (from 5.32 to 3.8 Ma). During the Lower Pliocene this accommodation space was filled by a Gilbert fan delta. This history yields two other benchmark levels: (i) the marine/non marine Pliocene transition which is an heterochronous surface produced by the Gilbert delta progradation. This surface recorded the Pliocene highstand sea level; (ii) the Pliocene abandonment surface at the top of the Gilbert delta continental wedge. Close to the Rhône-Ardeche confluence, the present day elevations of the four reference levels are (evolution of base-level synthesized in fig. 4): (1) 312 m asl, (2) 236 m bsl, (3) 130 m asl, (4) 190 m asl. The Ardèche carbonate platform underwent karstification both surficial and at depth. The endokarst is characterized by numerous cavities organised in networks. Saint-Marcel Cave is one of those networks providing the most complete record (fig. 5). It opens out on the northern side of the Ardeche canyon at an altitude of 100 m. It is made up by three superposed levels extending over 45 km in length. The lower level (1) is flooded and functionnal. It extends beneath the Ardeche thalweg down to the depth of 10 m bsl reached by divers. The observations collected in the galleries lead us to the conclusion that the karst originated in the vadose area [Brunet, 2000]. The coeval base-level was necessarily below those galleries. The two other levels (middle (2) and upper (3)) are today abandoned and perched. The middle level is about 115 m asl and the upper one is about 185 m asl. They are horizontal and have morphologies specific to the phreatic and temporary phreatic zone of the karst (fig. 6). In literature, the terracing of the Saint-Marcel Cave had been systematically interpreted as the result of the lowering by steps of the Ardeche base-level [Guérin, 1973; Blanc, 1995; Gombert, 1988; Debard, 1997]. In this interpretation, each deepening phase of the base level induces the genesis of the gravitary shaft and the abandonment of the previous horizontal level. The next stillstand of base level leads to the elaboration of a new horizontal level (fig. 7). This explanation is valid for most of Quaternary karsts, that are related to glacioeustatic falls of sea-level. However our study on the Saint-Marcel Cave contests this interpretation because all the shafts show an upward digging dynamism and no hint of vadose sections. The same “per ascensum” hydrodynamism was prevailing during the development of the whole network (figs. 8 and 9). We interpret the development of the Ardeche endokarst as related to the eustatic Messinian-Pliocene cycle TB 3.4/3.5 recorded by the Rhône river. The diving investigations in the flooded part of the Saint-Marcel Cave and also in the vauclusian springs of Bourg-Saint-Andeol reached - 154 m bsl. Those depths are compatible only with the incision of the Messinian Rhône canyon at the same altitude (−236 m bsl). The Saint-Marcel lower level would have develop at that time. The ascending shaping of levels 2 and 3 is thus likely to have formed during the ensuing sea-level rise and highstand during the Pliocene, in mainly two steps: (i) the ria stage controlled by the Mediterranean sea level rise and stillstand; (ii) the rhodanian Gilbert delta progradation, that controlled the genesis of the upper level (fig. 10).


Author(s):  
Marco Anzidei ◽  
Fawzi Doumaz ◽  
Antonio Vecchio ◽  
Enrico Serpelloni ◽  
Luca Pizzimenti ◽  
...  

Sea level rise is one of the main factor of risk for the preservation of cultural heritage sites located along the coasts of the Mediterranean basin. Coastal retreat, erosion and storm surges are yet posing serious threats to archaeological and historical structures built along the coastal zones of this region. In order to assess the coastal changes by the end of 2100 under an expected sea level rise of about 1 m, a detailed determination of the current coastline position and the availability of high resolution DSM, is needed. This paper focuses on the use of very high-resolution UAV imagery for the generation of ultra-high resolution mapping of the coastal archaeological area of Pyrgi, near Rome (Italy). The processing of the UAV imagery resulted in the generation of a DSM and an orthophoto, with an accuracy of 1.94 cm/pixel. The integration of topographic data with two sea level rise projections in the IPCC AR5 2.6 and 8.5 climatic scenarios for this area of the Mediterranean, were used to map sea level rise scenarios for 2050 and 2100. The effects of the Vertical Land Motion (VLM) as estimated from two nearby continuous GPS stations located as much as close to the coastline, were included in the analysis. Relative sea level rise projections provide values at 0.30±0.15 cm by 2050 and 0.56±0.22 by 2100, for the IPCC AR5 8.5 scenarios and at 0.13±0.05 cm by 2050 and 0.17±0.22 by 2100, for the IPCC AR5 2.6 scenario. These values of rise will correspond to a potential beach loss between 12.6% and 23.5% in 2100 for RCP 2.6 and 8.5 scenarios, respectively, while during the highest tides the beach will be reduced up to 46.4%. With these sea level rise scenarios, Pyrgi with its nearby Etruscan temples and the medieval castle of Santa Severa will be soon exposed to high risk of marine flooding, especially during storm surges, thus requiring suitable adaptation strategies.


2020 ◽  
Author(s):  
Francesco De Biasio ◽  
Stefano Vignudelli ◽  
Giorgio Baldin

<p align="justify"><span>The European Space Agency, in the framework of the Sea Level Climate Change Initiative (SL_CCI), is developing consistent and long-term satellite-based data-sets to study climate-scale variations of sea level globally and in the coastal zone. Two altimetry data-sets were recently produced. The first product is generated over a grid of 0.25x0.25 degrees, merging and homogenizing the various satellite altimetry missions. The second product that is still experimental is along track over a grid of 0.35 km. An operational production of climate-oriented altimeter sea level products has just started in the framework of the European Copernicus Climate Change Service (C3S) and a daily-mean product is now available over a grid of 0.125x0.125 degrees covering the global ocean since 1993 to present.</span></p><p align="justify"><span>We made a comparison of the SL_CCI satellite altimetry dataset with sea level time series at selected tide gauges in the Mediterranean Sea, focusing on Venice and Trieste. There, the coast is densely covered by civil settlements and industrial areas with a strongly rooted seaside tourism, and tides and storm-related surges reach higher levels than in most of the Mediterranean Sea, causing damages and casualties as in the recent storm of November 12th, 2019: the second higher water registered in Venice since 1872. Moreover, in the Venice area the ground displacements exhibit clear negative trends which deepen the effects of the absolute sea level rise.</span></p><p align="justify"><span>Several authors have pointed out the synergy between satellite altimetry and tide gauges to corroborate evidences of ground displacements. Our contribution aims at understanding the role played by subsidence, estimated by the diffence between coastal altimetry and in situ measurements, on the local sea level rise. A partial validation of these estimates has been made against GPS-derived values, in order to distinguish the contributions of subsidence and eustatism. This work will contribute to identify problems and challenges to extend the sea level climate record to the coastal zone with quality comparable to the open ocean, and also to assess the suitability of altimeter-derived absolute sea levels as a tool to estimate subsidence from tide gauge measurement in places where permanent GPS receivers are not available.</span></p>


2020 ◽  
Vol 8 (2) ◽  
pp. 64 ◽  
Author(s):  
Marco Anzidei ◽  
Fawzi Doumaz ◽  
Antonio Vecchio ◽  
Enrico Serpelloni ◽  
Luca Pizzimenti ◽  
...  

Sea level rise is one of the main risk factors for the preservation of cultural heritage sites located along the coasts of the Mediterranean basin. Coastal retreat, erosion, and storm surges are posing serious threats to archaeological and historical structures built along the coastal zones of this region. In order to assess the coastal changes by the end of 2100 under the expected sea level rise of about 1 m, we need a detailed determination of the current coastline position based on high resolution Digital Surface Models (DSM). This paper focuses on the use of very high-resolution Unmanned Aerial Vehicles (UAV) imagery for the generation of ultra-high-resolution mapping of the coastal archaeological area of Pyrgi, Italy, which is located near Rome. The processing of the UAV imagery resulted in the generation of a DSM and an orthophoto with an accuracy of 1.94 cm/pixel. The integration of topographic data with two sea level rise projections in the Intergovernmental Panel on Climate Change (IPCC) AR5 2.6 and 8.5 climatic scenarios for this area of the Mediterranean are used to map sea level rise scenarios for 2050 and 2100. The effects of the Vertical Land Motion (VLM) as estimated from two nearby continuous Global Navigation Satellite System (GNSS) stations located as close as possible to the coastline are included in the analysis. Relative sea level rise projections provide values at 0.30 ± 0.15 cm by 2050 and 0.56 ± 0.22 cm by 2100 for the IPCC AR5 8.5 scenarios and at 0.13 ± 0.05 cm by 2050 and 0.17 ± 0.22 cm by 2100, for the IPCC Fifth Assessment Report (AR5) 2.6 scenario. These values of rise correspond to a potential beach loss between 12.6% and 23.5% in 2100 for Representative Concentration Pathway (RCP) 2.6 and 8.5 scenarios, respectively, while, during the highest tides, the beach will be provisionally reduced by up to 46.4%. In higher sea level positions and storm surge conditions, the expected maximum wave run up for return time of 1 and 100 years is at 3.37 m and 5.76 m, respectively, which is capable to exceed the local dune system. With these sea level rise scenarios, Pyrgi with its nearby Etruscan temples and the medieval castle of Santa Severa will be exposed to high risk of marine flooding, especially during storm surges. Our scenarios show that suitable adaptation and protection strategies are required.


2012 ◽  
Vol 39 (9-10) ◽  
pp. 2167-2184 ◽  
Author(s):  
A. Carillo ◽  
G. Sannino ◽  
V. Artale ◽  
P. M. Ruti ◽  
S. Calmanti ◽  
...  

2021 ◽  
Author(s):  
Michele Crosetto ◽  
Marco Anzidei ◽  
Giovanna Forlenza ◽  
José Navarro ◽  
Petros Patias ◽  
...  

<p>Here we show and discuss the first results arising from the SAVEMEDCOASTS-2 Project (Sea Level Rise Scenarios along the Mediterranean Coasts - 2, funded by the European Commission ECHO), which aims to respond to the need for people and assets prevention from natural disasters in the Mediterranean coastal zones placed at less than 1 m above sea level, which are vulnerable to the combined effect of sea-level rise and land subsidence.</p><p>We use geodetic data from global navigation satellite system (GNSS), synthetic aperture radar interferometric measurements (InSAR), Lidar and tide gauge data, and the latest IPCC - SROCC projections of sea-level rise released by the Intergovernmental Panel on Climate Change, to estimate the Relative Sea Level Rise to realize marine flooding scenarios expected for 2100 AD in six targeted areas of the Mediterranean region.</p><p>We focus on the Ebro (Spain), Rhone (France), and Nile (Egypt) river deltas; the reclamation area of Basento (Italy), the coastal plain of Thessaloniki (Greece), and the Venice lagoon (Italy). Results, from Copernicus Sentinel-1A (S1A) and Sentinel-1B (S1B) sensors, highlighted the variable spatial rates of land subsidence up to some cm/yr in most of the investigated areas representing a relevant driver of local SLR. All the investigated zones show valuable coastal infrastructures and natural reserves where SLR and land subsidence are exacerbating coastal retreat, land flooding, and storm surges.</p><p>The hazard implications for the population living along the shore should push land planners and decision-makers to take into account scenarios similar to that reported in this study for cognizant coastal management.</p>


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2597
Author(s):  
Giacomo Deiana ◽  
Fabrizio Antonioli ◽  
Lorenzo Moretti ◽  
Paolo Emanuele Orrù ◽  
Giovanni Randazzo ◽  
...  

Areas of the Mediterranean Sea are dynamic habitats in which human activities have been conducted for centuries and which feature micro-tidal environments with about 0.40 m of range. For this reason, human settlements are still concentrated along a narrow coastline strip, where any change in the sea level and coastal dynamics may impact anthropic activities. We analyzed light detection and ranging (LiDAR) and Copernicus Earth observation data. The aim of this research is to provide estimates and detailed maps (in three coastal plain of Sardinia (Italy) and in the Pontina Plain (southern Latium, Italy) of: (i) the past marine transgression occurred during MIS 5.5 highstand 119 kyrss BP; (ii) the coastline regression occurred during the last glacial maximum MIS 2 (21.5 krs cal BP); and (iii) the potential marine submersion for 2100 and 2300. The objective of this multidisciplinary study is to provide maps of sea level rise future scenarios using the IPCC RCP 8.5 2019 projections and glacio-hydro-isostatic movements for the above selected coastal zones (considered tectonically stable), which are the locations of touristic resorts, railways and heritage sites. We estimated a potential loss of land for the above areas of between about 146 km2 (IPCC 2019-RCP8.5 scenario) and 637 km2 along a coastline length of about 268 km.


Sign in / Sign up

Export Citation Format

Share Document