scholarly journals Seven Good Reasons for Integrating Terrestrial and Marine Spatial Datasets in Changing Environments

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2221 ◽  
Author(s):  
Mariacristina Prampolini ◽  
Alessandra Savini ◽  
Federica Foglini ◽  
Mauro Soldati

A comprehensive understanding of environmental changes taking place in coastal regions relies on accurate integration of both terrestrial and submerged geo-environmental datasets. However, this practice is hardly implemented because of the high (or even prohibitive) survey costs required for submerged areas and the frequent low accessibility of shallow areas. In addition, geoscientists are used to working on land or at sea independently, making the integration even more challenging. Undoubtedly new methods and techniques of offshore investigation adopted over the last 50 years and the latest advances in computer vision have played a crucial role in allowing a seamless combination of terrestrial and marine data. Although efforts towards an innovative integration of geo-environmental data from above to underwater are still in their infancy, we have identified seven topics for which this integration could be of tremendous benefit for environmental research: (1) geomorphological mapping; (2) Late-Quaternary changes of coastal landscapes; (3) geoarchaeology; (4) geoheritage and geodiversity; (5) geohazards; (6) marine and landscape ecology; and (7) coastal planning and management. Our review indicates that the realization of seamless DTMs appears to be the basic condition to operate a comprehensive integration of marine and terrestrial data sets, so far exhaustively achieved in very few case studies. Technology and interdisciplinarity will be therefore critical for the development of a holistic approach to understand our changing environments and design appropriate management measures accordingly.

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Catherine O'Reilly ◽  
Stephanie Hampton ◽  
Sapna Sharma ◽  
Derek Gray ◽  
Jordan Read ◽  
...  

Pulling together long-term data is increasingly important in assessing environmental changes, whether regionally or globally.


2020 ◽  
Author(s):  
Martin H. Trauth

<p>Geoscientists from the University of Potsdam reconstruct environmental changes in East Africa over the past five million years. Micro-organisms such as diatoms and rotifers, clay minerals and pollen, thousands of years old, help to reconstruct large lakes and braided rivers, dense forests and hot deserts, high mountains and deep valleys. This is the habitat of our ancestors, members of a complicated family tree or network, of which only one single species, <em>Homo sapiens</em>, has survived. MATLAB is the tool of choice for analyzing these complicated and extensive data sets, extracted from up to 300 m long drill cores, from satellite images, and from the fossil remains of humans and other animals. The software is used to analyze to detect and classify important climate transitions in climate time series, to detect objects and quantify materials in microscope and satellite imagery, to predict river networks from digital terrain models, and to model lake-level fluctuations from environmental data. The advantage of MATLAB is the use of multiple methods with one single tool. Not least because of this, the software is also becoming increasingly popular in Africa, as shown by the program of an international summer school series in Africa and Germany for collecting, processing, and presenting geo-bio-information.</p>


2020 ◽  
Vol 115 ◽  
pp. 329-378
Author(s):  
Lisa C. Nevett ◽  
E. Bettina Tsigarida ◽  
Zosia H. Archibald ◽  
David L. Stone ◽  
Bradley A. Ault ◽  
...  

This article argues that a holistic approach to documenting and understanding the physical evidence for individual cities would enhance our ability to address major questions about urbanisation, urbanism, cultural identities and economic processes. At the same time we suggest that providing more comprehensive data-sets concerning Greek cities would represent an important contribution to cross-cultural studies of urban development and urbanism, which have often overlooked relevant evidence from Classical Greece. As an example of the approach we are advocating, we offer detailed discussion of data from the Archaic and Classical city of Olynthos, in the Halkidiki. Six seasons of fieldwork here by the Olynthos Project, together with legacy data from earlier projects by the American School of Classical Studies at Athens and by the Greek Archaeological Service, combine to make this one of the best-documented urban centres surviving from the Greek world. We suggest that the material from the site offers the potential to build up a detailed ‘urban profile’, consisting of an overview of the early development of the community as well as an in-depth picture of the organisation of the Classical settlement. Some aspects of the urban infrastructure can also be quantified, allowing a new assessment of (for example) its demography. This article offers a sample of the kinds of data available and the sorts of questions that can be addressed in constructing such a profile, based on a brief summary of the interim results of fieldwork and data analysis carried out by the Olynthos Project, with a focus on research undertaken during the 2017, 2018 and 2019 seasons.


Author(s):  
Ahmad R. Alsaber ◽  
Jiazhu Pan ◽  
Adeeba Al-Hurban 

In environmental research, missing data are often a challenge for statistical modeling. This paper addressed some advanced techniques to deal with missing values in a data set measuring air quality using a multiple imputation (MI) approach. MCAR, MAR, and NMAR missing data techniques are applied to the data set. Five missing data levels are considered: 5%, 10%, 20%, 30%, and 40%. The imputation method used in this paper is an iterative imputation method, missForest, which is related to the random forest approach. Air quality data sets were gathered from five monitoring stations in Kuwait, aggregated to a daily basis. Logarithm transformation was carried out for all pollutant data, in order to normalize their distributions and to minimize skewness. We found high levels of missing values for NO2 (18.4%), CO (18.5%), PM10 (57.4%), SO2 (19.0%), and O3 (18.2%) data. Climatological data (i.e., air temperature, relative humidity, wind direction, and wind speed) were used as control variables for better estimation. The results show that the MAR technique had the lowest RMSE and MAE. We conclude that MI using the missForest approach has a high level of accuracy in estimating missing values. MissForest had the lowest imputation error (RMSE and MAE) among the other imputation methods and, thus, can be considered to be appropriate for analyzing air quality data.


2015 ◽  
Vol 16 (1) ◽  
pp. 62-85 ◽  
Author(s):  
Cheri Jeanette Duncan ◽  
Genya Morgan O'Gara

Purpose – The purpose of this paper is to examine the development of a flexible collections assessment rubric comprised of a suite of tools for more consistently and effectively evaluating and expressing a holistic value of library collections to a variety of constituents, from administrators to faculty and students, with particular emphasis to the use of data already being collected at libraries to “take the temperature” of how responsive collections are in supporting institutional goals. Design/methodology/approach – Using a literature review, internal and external conversations, several collections pilot projects, and a variety of other investigative mechanisms, this paper explores methods for creating a more flexible, holistic collection development and assessment model using both qualitative and quantitative data. Findings – The products of scholarship that academic libraries include in their collections are expanding exponentially and range from journals and monographs in all formats, to databases, data sets, digital text and images, streaming media, visualizations and animations. Content is also being shared in new ways and on a variety of platforms. Yet the framework for evaluating this new landscape of scholarly output is in its infancy. So, how do libraries develop and assess collections in a consistent, holistic, yet agile, manner? Libraries must employ a variety of mechanisms to ensure this goal, while remaining flexible in adapting to the shifting collections environment. Originality/value – In so much as the authors are aware, this is the first paper to examine an agile, holistic approach to collections using both qualitative and quantitative data.


1993 ◽  
Vol 40 (3) ◽  
pp. 332-342 ◽  
Author(s):  
Maria Socorro Lozano-Garcı́a ◽  
Beatriz Ortega-Guerrero ◽  
Margarita Caballero-Miranda ◽  
Jaime Urrutia-Fucugauchi

AbstractIn order to establish paleoenvironmental conditions during the late Quaternary, four cores from the Basin of Mexico (central Mexico) were drilled in Chalco Lake, located in the southeastern part of the basin. The upper 8 m of two parallel cores were studied, using paleomagnetic, loss-on-ignition, pollen, and diatom analyses. Based on 11 14C ages, the analyzed record spans the last 19,000 14C yr B.P. Volcanic activity has affected microfossil abundances, both directly and indirectly, resulting in absence or reduction of pollen and diatom assemblages. Important volcanic activity took place between 19,000 and 15,000 yr B.P. when the lake was a shallow alkaline marsh and an increase of grassland pollen suggests a dry, cold climate. During this interval, abrupt environmental changes with increasing moisture occurred. From 15,000 until 12,500 yr B.P. the lake level increased and the pollen indicates wetter conditions. The highest lake level is registered from 12,500 to ca. 9000 yr B.P. The end of the Pleistocene is characterized by an increase in humidity. From 9000 until ca. 3000 yr B.P. Chalco Lake was a saline marsh and the pollen record indicates warmer conditions. After 3000 yr B.P. the lake level increased and human disturbance dominates the lacustrine record.


1998 ◽  
Vol 27 ◽  
pp. 275-280 ◽  
Author(s):  
Akira Nishimura ◽  
Toru Nakasone ◽  
Chikara Hiramatsu ◽  
Manabu Tanahashi

Based on sedimenlological and micropaleontological work on three sediment cores collected at about 167° Ε in the western Ross Sea, Antarctica, and accelerator mass spectrometer l4C ages of organic carbon, we have reconstructed environmental changes in the area during the late Quaternary. Since 38 ka BP at latest, this area was a marine environment with low productivity. A grounded ice sheet advanced and loaded the sediments before about 30-25 ka BP. After 25 ka BP, the southernmost site (76°46'S) was covered by floating ice (shelf ice), preventing deposition of coarse terrigenous materials and maintaining a supply of diatom tests and organic carbon until 20 ka BP. The northernmost site (74°33'S) was in a marine environment with a moderate productivity influenced by shelf ice/ice sheet after about 20 ka BP. Since about 10 ka BP, a sedimentary environment similar to the present-day one has prevailed over this area.


Author(s):  
Ebony I Weems ◽  
Noé U de la Sancha ◽  
Laurel J Anderson ◽  
Carlos Zambrana-Torrelio ◽  
Ronaldo P Ferraris

Synopsis We argue that the current environmental changes stressing the Earth’s biological systems urgently require study from an integrated perspective to reveal unexpected, cross-scale interactions, particularly between microbes and macroscale phenomena. Such interactions are the basis of a mechanistic understanding of the important connections between deforestation and emerging infectious disease, feedback between ecosystem disturbance and the gut microbiome, and the cross-scale effects of environmental pollutants. These kinds of questions can be answered with existing techniques and data, but a concerted effort is necessary to better coordinate studies and data sets from different disciplines to fully leverage their potential.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Azusa Nakamoto ◽  
Masashi Harada ◽  
Reiko Mitsuhashi ◽  
Kimiyuki Tsuchiya ◽  
Alexey P. Kryukov ◽  
...  

AbstractQuaternary environmental changes fundamentally influenced the genetic diversity of temperate-zone terrestrial animals, including those in the Japanese Archipelago. The genetic diversity of present-day populations is taxon- and region-specific, but its determinants are poorly understood. Here, we analyzed cytochrome b gene (Cytb) sequences (1140 bp) of mitochondrial DNA (mtDNA) to elucidate the factors determining the genetic variation in three species of large moles: Mogera imaizumii and Mogera wogura, which occur in central and southern mainland Japan (Honshu, Shikoku, and Kyushu), and Mogera robusta, which occurs on the nearby Asian continent. Network construction with the Cytb sequences revealed 10 star-shaped clusters with apparent geographic affinity. Mismatch distribution analysis showed that modes of pairwise nucleotide differences (τ values) were grouped into five classes in terms of the level, implying the occurrence of five stages for rapid expansion. It is conceivable that severe cold periods and subsequent warm periods during the late Quaternary were responsible for the population expansion events. The first and third oldest events included island-derived haplotypes, indicative of the involvement of land bridge formation between remote islands, hence suggesting an association of the ends of the penultimate (PGM, ca. 130,000 years ago) and last (LGM, ca. 15,000 years ago) glacial maxima, respectively. Since the third event was followed by the fourth, it is plausible that the termination of the Younger Dryas and subsequent abrupt warming ca. 11,500 years ago facilitated the fourth expansion event. The second event most likely corresponded to early marine isotope stage (MIS) 3 (ca. 53,000 years ago) when the glaciation and subsequent warming period were predicted to have influenced biodiversity. Utilization of the critical times of 130,000, 53,000, 15,000, and 11,500 years ago as calibration points yielded evolutionary rates of 0.03, 0.045, 0.10 and 0.10 substitutions/site/million years, respectively, showing a time-dependent manner whose pattern was similar to that seen in small rodents reported in our previous studies. The age of the fifth expansion event was calculated to be 5800 years ago with a rate of 0.10 substitutions/site/million years ago during the mid-Holocene, suggestive of the influence of humans or other unspecified reasons, such as the Jomon marine transgression.


Sign in / Sign up

Export Citation Format

Share Document