scholarly journals Insights on Dissolved Organic Matter Production Revealed by Removal of Charge-Transfer Interactions in Senescent Leaf Leachates

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2356
Author(s):  
Karl M. Meingast ◽  
Brice K. Grunert ◽  
Sarah A. Green ◽  
Evan S. Kane ◽  
Nastaran Khademimoshgenani

Dissolved organic matter (DOM) is a critical part of the global carbon cycle. Currently, it is understood that at least a portion of the chromophoric DOM (CDOM) character can be described through an electronic interaction of charge transfer (CT) complexes. While much work has been done to understand the influence of CT on soil and aquatic reference standard DOM, little is known about the influence of CT in fresh terrestrially derived DOM. In this study, leaf litter leachates from three tree species were treated (reduced) with sodium borohydride to determine the contribution of CT on a source of fresh terrestrial DOM. Leaf litter was sampled four times through decomposition under natural (field) conditions to determine the influence of degradation on response to borohydride treatment. Leaf litter CDOM displayed a unique loss of UVB absorption following borohydride treatment, as well as a homogenizing effect on fluorescence emission character. Humification index (HIX) differentiated Elliot Soil Humic Acid and Suwannee River Fulvic Acid from leaf litter leachates. However, biological index (BIX), and spectral slope metrics were not able to differentiate leaf leachates from these reference standards. Apparent quantum yields were similar in magnitude between leaf leachates and reference standards, although leaf leachate spectra displayed features not evident in reference standards. These results help understand the origins of DOM optical properties and associated quantitative indices in freshly sourced terrestrial material. Overall, these results suggest that even at the initial stages of decomposition, terrestrial CDOM exhibits optical characteristics and responses to removal of electron accepting ketones and aldehydes, through borohydride treatment, similar to more processed CDOM.

2012 ◽  
Vol 41 (3) ◽  
pp. 823-833 ◽  
Author(s):  
Satoshi Nishimura ◽  
Nagamitsu Maie ◽  
Mitsuhisa Baba ◽  
Takahiro Sudo ◽  
Toshihiro Sugiura ◽  
...  

2014 ◽  
Vol 16 (4) ◽  
pp. 654-671 ◽  
Author(s):  
Charles M. Sharpless ◽  
Neil V. Blough

A critical review presenting the case for an electronic interaction model as the basis for CDOM optical and photochemical properties.


2020 ◽  
Vol 8 (6) ◽  
pp. 883
Author(s):  
Shilei Zhou ◽  
Yue Sun ◽  
Minghui Yu ◽  
Zhenpeng Shi ◽  
Hang Zhang ◽  
...  

The relationship between CDOM (Chromophoric dissolved organic matter) and the bacterial community was investigated in ice-covered Baiyangdian Lake. The results showed that environmental parameters significantly differed in Baiyangdian Lake, whereas a-diversity was not significantly different. Moreover, the microbial and functional communities exhibited significant differences, and T (Temperature), pH, ORP (Oxidation-reduction potential), DO (Dissolved oxygen), NO3−-N, NH4+-N, and Mn (Manganese) were the main environmental factors of these differences, based on redundancy analysis and the Mantel test. Biomarkers of the microbial and functional communities were investigated through linear discriminant analysis effect size and STAMP analysis. The number of biomarkers in the natural area was highest among the typical zones, and most top functions were related to carbohydrate metabolism. Two protein-like components (C1 and C2) and one humic-like component (C3) were identified by parallel factor analysis, and C1 was positively related to C2 (R = 0.99, p < 0.001), indicating the same sources. Moreover, CDOM significantly differed among the typical zones (p < 0.001). The high biological index, fluorescence index, β:α, and low humification index indicated a strong autochthonous component and aquatic bacterial origin, which was consistent with the results of UV-vis absorption spectroscopy. Network analysis revealed non-random co-occurrence patterns. The bacterial and functional communities interacted closely with CDOM. The dominant genera were CL500-29_marine_group, Flavobacterium, Limnohabitans, and Candidatus_Aquirestis. Random forest analysis showed that C1, C2, and C3 are important predictors of α- and β-diversity in the water bacterial community and its functional composition. This study provides insight into the interaction between bacterial communities and DOM (Dissolved organic matter) in ice-covered Baiyangdian Lake.


2015 ◽  
Vol 12 (22) ◽  
pp. 6823-6836 ◽  
Author(s):  
Y. Zhang ◽  
H. Xie

Abstract. Rates and apparent quantum yields of photomineralization (AQYDOC) and photomethanification (AQYCH4) of chromophoric dissolved organic matter (CDOM) in Saguenay River surface water were determined at three widely differing dissolved oxygen concentrations ([O2]) (suboxic, air saturation, and oxygenated) using simulated-solar radiation. Photomineralization increased linearly with CDOM absorbance photobleaching for all three O2 treatments. Whereas the rate of photochemical dissolved organic carbon (DOC) loss increased with increasing [O2], the ratio of fractional DOC loss to fractional absorbance loss showed an inverse trend. CDOM photodegradation led to a higher degree of mineralization under suboxic conditions than under oxic conditions. AQYDOC determined under oxygenated, suboxic, and air-saturated conditions increased, decreased, and remained largely constant with photobleaching, respectively; AQYDOC obtained under air saturation with short-term irradiations could thus be applied to longer exposures. AQYDOC decreased successively from ultraviolet B (UVB) to ultraviolet A (UVA) to visible (VIS), which, alongside the solar irradiance spectrum, points to VIS and UVA being the primary drivers for photomineralization in the water column. The photomineralization rate in the Saguenay River was estimated to be 2.31 × 108 mol C yr−1, accounting for only 1 % of the annual DOC input into this system. Photoproduction of CH4 occurred under both suboxic and oxic conditions and increased with decreasing [O2], with the rate under suboxic conditions ~ 7–8 times that under oxic conditions. Photoproduction of CH4 under oxic conditions increased linearly with photomineralization and photobleaching. Under air saturation, 0.00057 % of the photochemical DOC loss was diverted to CH4, giving a photochemical CH4 production rate of 4.36 × 10−6 mol m−2 yr−1 in the Saguenay River and, by extrapolation, of (1.9–8.1) × 108 mol yr−1 in the global ocean. AQYCH4 changed little with photobleaching under air saturation but increased exponentially under suboxic conditions. Spectrally, AQYCH4 decreased sequentially from UVB to UVA to VIS, with UVB being more efficient under suboxic conditions than under oxic conditions. On a depth-integrated basis, VIS prevailed over UVB in controlling CH4 photoproduction under air saturation while the opposite held true under O2-deficiency. An addition of micromolar levels of dissolved dimethyl sulfide (DMS) substantially increased CH4 photoproduction, particularly under O2-deficiency; DMS at nanomolar ambient concentrations in surface oceans is, however, unlikely a significant CH4 precursor. Results from this study suggest that CDOM-based CH4 photoproduction only marginally contributes to the CH4 supersaturation in modern surface oceans and to both the modern and Archean atmospheric CH4 budgets, but that the photochemical term can be comparable to microbial CH4 oxidation in modern oxic oceans. Our results also suggest that anoxic microniches in particulate organic matter and phytoplankton cells containing elevated concentrations of precursors of the methyl radical such as DMS may provide potential hotspots for CH4 photoproduction.


1997 ◽  
Vol 77 (3) ◽  
pp. 405-413 ◽  
Author(s):  
M. Susan Erich ◽  
Georgette M. Trusty

Liming of forest soils, currently practiced in Europe, may be necessary in the future in North America to counteract calcium (Ca) depletion due to whole tree harvesting. With current concerns over increasing carbon dioxide (CO2) levels in the atmosphere, the effects of forest practices such as liming on carbon (C) cycling in forest ecosystems has been receiving increasing attention. This laboratory study investigated the effect of an increase in pH on dissolved organic matter (DOM) in water extracts of organic horizons. Organic horizons were collected from nine forested sites, some predominantly hardwood and some predominantly softwood stand types. The soils were chemically characterized. Water extracts of limed and unlimed treatments of nine organic horizons were analyzed for pH, Al, Fe, Ca, C, and DOM negative charge density. Total luminescence fluorescence spectra were also obtained for each extract. The addition of lime (CaCO3) to organic horizons caused an average of 55% more C to be released than in unamended samples. Liming caused no significant changes in negative charge density of the DOM. Liming decreased organically-complexed aluminum (Al) and increased organically-complexed Ca. There was a negative correlation between Al concentration of extracts and fluorescence intensity. Chemical changes in the DOM released by liming were suggested by decreased fluorescence emission and excitation wavelengths due to liming. Hardwood samples did not respond differently than softwood samples with respect to DOM concentration, functional group concentration, or spectroscopic characteristics. However, there was a suggestion that particular tree species, such as cedar, may have unique effects on C concentrations and DOM chemistry. Key words: Lime, forest soil, dissolved organic matter, fluorescence


2015 ◽  
Vol 15 (5) ◽  
pp. 2295-2312 ◽  
Author(s):  
T. Launois ◽  
S. Belviso ◽  
L. Bopp ◽  
C. G. Fichot ◽  
P. Peylin

Abstract. The global budget of tropospheric carbonyl sulfide (OCS) is believed to be at equilibrium because background air concentrations have remained roughly stable over at least the last decade. Since the uptake of OCS by leaves (associated with photosynthesis) and soils have been revised significantly upwards recently, an equilibrated budget can only be obtained with a compensatory source of OCS. It has been assumed that the missing source of OCS comes from the low-latitude ocean, following the incident solar flux. The present work uses parameterizations of major production and removal processes of organic compounds in the NEMO-PISCES (Nucleus for European Modelling of the Ocean, Pelagic Interaction Scheme for Carbon and Ecosystem Studies) ocean general circulation and biogeochemistry model to assess the marine source of OCS. In addition, the OCS photo-production rates computed with the NEMO-PISCES model~were evaluated independently using the UV absorption coefficient of chromophoric dissolved organic matter (derived from satellite ocean color data) and apparent quantum yields available in the literature. Our simulations show global direct marine emissions of OCS in the range of 573–3997 GgS yr−1, depending mostly on the quantification of the absorption rate of chromophoric dissolved organic matter. The high estimates of that range are unlikely, as they correspond to a formulation that most likely overestimate photo-production process. Low and medium (813 GgS yr−1) estimates derived from the NEMO-PISCES model are however consistent spatially and temporally~with the suggested missing source of Berry et al. (2013), allowing us thus to close the global budget of OCS given the recent estimates of leaf and soil OCS uptake.


Chemosphere ◽  
2016 ◽  
Vol 152 ◽  
pp. 335-344 ◽  
Author(s):  
Qianyun Jian ◽  
Treavor H. Boyer ◽  
Xiuhong Yang ◽  
Beicheng Xia ◽  
Xin Yang

Sign in / Sign up

Export Citation Format

Share Document