scholarly journals Responses of Winter Wheat Yield to Drought in the North China Plain: Spatial–Temporal Patterns and Climatic Drivers

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3094
Author(s):  
Jianhua Yang ◽  
Jianjun Wu ◽  
Leizhen Liu ◽  
Hongkui Zhou ◽  
Adu Gong ◽  
...  

Understanding the winter wheat yield responses to drought are the keys to minimizing drought-related winter wheat yield losses under climate change. The research goal of our study is to explore the response patterns of winter wheat yield to drought in the North China Plain (NCP) and then further to study which climatic factors drive the response patterns. For this purpose, winter wheat yield was simulated by the Environmental Policy Integrated Climate (EPIC) crop model. Drought was quantified by standardized precipitation evapotranspiration index (SPEI), and the contributions of the various climatic factors were evaluated using predictive discriminant analysis (PDA) method. The results showed that the responses of winter wheat yield to different time-scale droughts have obvious spatial differences from the north part to the south part in the NCP. Winter wheat yield is more sensitive to the medium (6–9 months) and long (9–12 months) time-scale droughts that occurred in the key growth periods (April and May). The different response patterns of winter wheat yield to the different time-scale droughts are mainly controlled by temperature and water balance (precipitation minus potential evapotranspiration) in winter in the NCP. Compared with the water balance, temperature plays a more important role in driving the response pattern characteristics. These findings can provide a reference on how to reduce drought influences on winter wheat yield in the NCP.

2013 ◽  
Vol 27 (4) ◽  
pp. 768-777 ◽  
Author(s):  
Alexander Menegat ◽  
Ortrud Jäck ◽  
Jinwei Zhang ◽  
Kathrin Kleinknecht ◽  
Bettina U. Müller ◽  
...  

Japanese bindweed was found to be one of the most abundant and most difficult-to-control weed species during a 2-yr weed survey in more than 100 winter wheat fields in the North China Plain region. Multivariate data analysis showed that Japanese bindweed is most abundant at sites with comparative low nitrogen (N) fertilization intensities and low crop densities. To gain deeper insights into the biology of Japanese bindweed under various N fertilization intensities, winter wheat seeding rates, herbicide treatments, and their interactions, a 2-yr field experiment was performed. In nonfertilized plots, a herbicide efficacy (based on density reduction) of 22% for 2,4-D, and of 25% for tribenuron-methyl was found. The maximum herbicide efficacy in Nmin-fertilized plots (target N value based on expected crop yield minus soil mineral nitrogen content,) was 32% for 2,4-D and 34% for tribenuron-methyl. In plots fertilized according to the farmer's practices, a maximum herbicide efficacy of 72% for 2,4-D and of 64% for tribenuron-methyl could be observed. Furthermore, medium and high seeding rates improved the herbicide efficacy by at least 39% for tribenuron-methyl and 44% for 2,4-D compared to the low seeding rate. Winter wheat yield was not significantly affected by seeding rate itself, whereas at low and medium seeding rates, Nminfertilization was decreasing winter wheat yield significantly compared to the farmer's usual fertilization practice. At the highest seeding rate, Nminfertilization resulted in equal yields compared to the farmer's practices of fertilization.


2017 ◽  
Vol 207 ◽  
pp. 30-41 ◽  
Author(s):  
Qin Fang ◽  
Xiying Zhang ◽  
Suying Chen ◽  
Liwei Shao ◽  
Hongyong Sun

2019 ◽  
Vol 11 (13) ◽  
pp. 1593 ◽  
Author(s):  
Linghui Guo ◽  
Jiangbo Gao ◽  
Chengyuan Hao ◽  
Linlin Zhang ◽  
Shaohong Wu ◽  
...  

Vegetation phenology plays a critical role in the dynamic response of terrestrial ecosystems to climate change. However, the relationship between the phenology of winter wheat and hydrothermal factors is inadequate, especially in typical agricultural areas. In this study, the possible effects of preseason climate changes on the green-up date (GUD) of winter wheat over the North China Plain (NCP) was investigated, using the MODIS EVI 8-day time-series data from 2000 to 2015, as well as the concurrent monthly mean temperature (Tm), mean maximum (Tmax) and minimum temperature (Tmin) and total precipitation (TP) data. Firstly, we quantitatively identified the time lag effects of winter wheat GUD responses to different climatic factors; then, the major driving factors for winter wheat GUD were further explored by applying multiple linear regression models. The results showed that the time lag effects of winter wheat GUD response to climatic factors were site- and climatic parameters-dependent. Negative temperature effects with about a 3-month time lag dominated in most of the NCP, whereas positive temperature effects with a zero-month lag were most common in some of the southern parts. In comparison, total precipitation had a negative zero-month lag effect in the northern region, but two lagged months occurred in the south. Regarding the time lag effects, the explanation power of climatic factors improved relatively by up to 77%, and the explanation area increased by 41.20%. Additionally, change in winter wheat GUD was primarily determined by temperature rather than by TP, with a marked spatial heterogeneity of the Tmax and Tmin effect. Our results confirmed different time lag effects from different climatic factors on phenological processes in spring, and further suggested that both Tmax and Tmin should be considered to improve the performance of spring phenology models.


2020 ◽  
pp. 1-13
Author(s):  
Fangfang Wang ◽  
Donghao Ma ◽  
Wenju Zhao ◽  
Yunxuan Lu ◽  
Ding Zhou ◽  
...  

Accurate determination of evapotranspiration (ET) has tremendous potential in guiding irrigation and improving the efficiency of water resources utilization in the North China Plain. Eddy covariance (EC) method is currently a popular method for determining field-scale ET. However, due to varying foot print and unclosed energy balance, the applicability of EC in different regions needs to be tested and corrected. In present work, we compared the ET of the winter wheat – summer maize rotation cropland measured by the EC method with the ET measured by large-scale lysimeters on different time scales. The degree of energy balance closure of EC measurements in this region is 78%. After adjusted by using Bowen ratio forced closure method, the ET monitored by EC is comparable with those monitored by large-scale lysimeters. The results also indicated that the consistency of the observed ET by the EC and lysimeters got better with an increasing time scale, especially for the multi-year average ET values with a relative deviation of less than 1%. The short-time events such as irrigation and precipitation and the mismatch of the varying footprint area of the EC and the small fixed source area of the lysimeter should be responsible for the discrepancy of ET in two methods on daily scale. However, the factors of crop biomass, total available water, and local climate condition exert more effects on the observed ET on large time scale. Overall, the EC technique is responsible for ET measurement of winter wheat – summer maize rotation cropland of the North China Plain.


Sign in / Sign up

Export Citation Format

Share Document