scholarly journals Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain

2020 ◽  
Vol 19 (9) ◽  
pp. 2326-2339
Author(s):  
Dong-yu CAI ◽  
Hai-jun YAN ◽  
Lian-hao LI
2015 ◽  
Vol 171 ◽  
pp. 157-164 ◽  
Author(s):  
Dianjun Lu ◽  
Feifei Lu ◽  
Junxiao Pan ◽  
Zhenling Cui ◽  
Chunqin Zou ◽  
...  

2020 ◽  
Vol 251 ◽  
pp. 119632 ◽  
Author(s):  
Bing-Yang Liu ◽  
Xin Zhao ◽  
Shuai-Shuai Li ◽  
Xiong-Zhi Zhang ◽  
Ahmad Latif Virk ◽  
...  

2012 ◽  
Vol 58 (No. 1) ◽  
pp. 1-8 ◽  
Author(s):  
T. Ning ◽  
Shao GQ ◽  
Li ZJ ◽  
Han HF ◽  
Hu HG ◽  
...  

Water and nitrogen managements are both very important to increase crop yield. An experiment was carried out in split plot design to study the effects of urea types (normal urea and coated urea) and irrigation on soil and fertilizer nitrogen use in maize (Zea mays L.) field in 2006 and 2007. Irrigation was used as main plot, and urea types were used as split-plot. Two irrigation levels, no irrigation in the whole growth duration and 85 mm irrigation at the blister stage, were designed. There were five nitrogen treatments, which were no nitrogen used as control (N0), normal urea 75 kg N/ha (N1), normal urea 150 kg N/ha (N2), coated urea 75 kg N/ha (C1) and coated urea 150 kg N/ha (C2). The results showed that, at the same level of irrigation and nitrogen, the soil nitrogen contents of the treatments with coated urea (CU) applied were higher in 0~40 cm soil layers, but lower in deeper soil layers, than those with normal urea (NU) applied. Irrigation increased the nitrate losing, but the nitrate loss of CU was lower than those of NU. Using CU with irrigation could increase the nitrogen uptake by maize, and more nitrogen was transfered to grain. At the same nitrogen level, CU had higher N recovery efficiency but lower soil N dependent rate than NU. When applied with CU, the nitrogen release rate was lower and the nitrogen was quickly absorbed by maize, which reduced the risk of nitrogen loss and increased the use efficiency of soil and fertilizer nitrogen. These results suggest that coated urea combined with deficit irrigation should be applied for high yield and nitrogen use efficiency of maize on the North China Plain.


2013 ◽  
Vol 27 (4) ◽  
pp. 768-777 ◽  
Author(s):  
Alexander Menegat ◽  
Ortrud Jäck ◽  
Jinwei Zhang ◽  
Kathrin Kleinknecht ◽  
Bettina U. Müller ◽  
...  

Japanese bindweed was found to be one of the most abundant and most difficult-to-control weed species during a 2-yr weed survey in more than 100 winter wheat fields in the North China Plain region. Multivariate data analysis showed that Japanese bindweed is most abundant at sites with comparative low nitrogen (N) fertilization intensities and low crop densities. To gain deeper insights into the biology of Japanese bindweed under various N fertilization intensities, winter wheat seeding rates, herbicide treatments, and their interactions, a 2-yr field experiment was performed. In nonfertilized plots, a herbicide efficacy (based on density reduction) of 22% for 2,4-D, and of 25% for tribenuron-methyl was found. The maximum herbicide efficacy in Nmin-fertilized plots (target N value based on expected crop yield minus soil mineral nitrogen content,) was 32% for 2,4-D and 34% for tribenuron-methyl. In plots fertilized according to the farmer's practices, a maximum herbicide efficacy of 72% for 2,4-D and of 64% for tribenuron-methyl could be observed. Furthermore, medium and high seeding rates improved the herbicide efficacy by at least 39% for tribenuron-methyl and 44% for 2,4-D compared to the low seeding rate. Winter wheat yield was not significantly affected by seeding rate itself, whereas at low and medium seeding rates, Nminfertilization was decreasing winter wheat yield significantly compared to the farmer's usual fertilization practice. At the highest seeding rate, Nminfertilization resulted in equal yields compared to the farmer's practices of fertilization.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3094
Author(s):  
Jianhua Yang ◽  
Jianjun Wu ◽  
Leizhen Liu ◽  
Hongkui Zhou ◽  
Adu Gong ◽  
...  

Understanding the winter wheat yield responses to drought are the keys to minimizing drought-related winter wheat yield losses under climate change. The research goal of our study is to explore the response patterns of winter wheat yield to drought in the North China Plain (NCP) and then further to study which climatic factors drive the response patterns. For this purpose, winter wheat yield was simulated by the Environmental Policy Integrated Climate (EPIC) crop model. Drought was quantified by standardized precipitation evapotranspiration index (SPEI), and the contributions of the various climatic factors were evaluated using predictive discriminant analysis (PDA) method. The results showed that the responses of winter wheat yield to different time-scale droughts have obvious spatial differences from the north part to the south part in the NCP. Winter wheat yield is more sensitive to the medium (6–9 months) and long (9–12 months) time-scale droughts that occurred in the key growth periods (April and May). The different response patterns of winter wheat yield to the different time-scale droughts are mainly controlled by temperature and water balance (precipitation minus potential evapotranspiration) in winter in the NCP. Compared with the water balance, temperature plays a more important role in driving the response pattern characteristics. These findings can provide a reference on how to reduce drought influences on winter wheat yield in the NCP.


Sign in / Sign up

Export Citation Format

Share Document