scholarly journals Multivariate Statistical Analysis of Water Quality and Trophic State in an Artificial Dam Reservoir

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Md Mamun ◽  
Ji Yoon Kim ◽  
Kwang-Guk An

Paldang Reservoir, located in the Han River basin in South Korea, is used for drinking water, fishing, irrigation, recreation, and hydroelectric power. Therefore, the water quality of the reservoir is of great importance. The main objectives of this study were to evaluate spatial and seasonal variations of surface water quality in the reservoir using multivariate statistical techniques (MSTs) along with the Trophic State Index (TSI) and Trophic State Index deviation (TSID). The empirical relationships among nutrients (total phosphorus, TP; total nitrogen, TN), chlorophyll-a (CHL-a), and annual variations of water quality parameters were also determined. To this end, 12 water quality parameters were monitored monthly at five sites along the reservoir from 1996 to 2019. Most of the parameters (all except pH, dissolved oxygen (DO), and total coliform bacteria (TCB)) showed significant spatial variations, indicating an influence of anthropogenic activities. Principal component analysis combined with factor analysis (PCA/FA) suggested that the parameters responsible for water quality variations were primarily correlated with nutrients and organic matter (anthropogenic), suspended solids (both natural and anthropogenic), and ionic concentrations (both natural and anthropogenic). Stepwise spatial discriminant analysis (DA) identified water temperature (WT), DO, electrical conductivity (EC), chemical oxygen demand (COD), the ratio of biological oxygen demand (BOD) to COD (BOD/COD), TN, TN:TP, and TCB as the parameters responsible for variations among sites, and seasonal stepwise DA identified WT, BOD, and total suspended solids (TSS) as the parameters responsible for variations among seasons. COD has increased (R2 = 0.63, p < 0.01) in the reservoir since 1996, suggesting that nonbiodegradable organic loading to the water body is rising. The empirical regression models of CHL-a-TP (R2 = 0.45) and CHL-a-TN (R2 = 0.27) indicated that TP better explained algal growth than TN. The mean TSI values for TP, CHL-a, and Secchi depth (SD) indicated a eutrophic state of the reservoir for all seasons and sites. Analysis of TSID suggested that blue-green algae dominated the algal community in the reservoir. The present results show that a significant increase in algal chlorophyll occurs during spring in the reservoir. Our findings may facilitate the management of Paldang Reservoir.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1325 ◽  
Author(s):  
Marsha Savira Agatha Putri ◽  
Jr-Lin Lin ◽  
Lin-Han Chiang Hsieh ◽  
Yasmin Zafirah ◽  
Gerry Andhikaputra ◽  
...  

Treatment cost and quality of domestic water are highly correlated with raw water quality in reservoirs. This study aims to identify the key factors that influence the trophic state levels and correlations among Carlson trophic state index (CTSI) levels, water quality parameters and weather factors in four major reservoirs in Taiwan from 2000 to 2017. Weather (e.g., air temperature, relative humidity, total precipitation, sunlight percentage and cloud cover) and water quality parameters (e.g., pH, chemical oxygen demand, suspended solids (SS), ammonia, total hardness, nitrate, nitrite and water temperature) were included in the principal component analysis and absolute principal component score models to evaluate the main governing factors of the trophic state levels (e.g., CTSI). SS were washed out by precipitation, thereby influencing the reservoir transparency tremendously and contributing over 50% to the CTSI level in eutrophicated reservoirs (e.g., the Shihmen and Chengchinghu Reservoirs). CTSI levels in the mesotrophic reservoir (e.g., Liyutan Reservoir) had strong correlation with chlorophyll-a and total phosphorus. Results show that rainfall/weather factors were the key driving factors that affected the CTSI levels in Taiwan eutrophicated reservoirs, indicating the need to consider basin management and the impacts of extreme precipitation in reservoir management and future policymaking.


2021 ◽  
Vol 4 (3) ◽  
pp. 164-184
Author(s):  
Md. Sirajul Islam ◽  
Yousuf Ali ◽  
Md. Humayun Kabir ◽  
Rofi Md. Zubaer ◽  
Nowara Tamanna Meghla ◽  
...  

This study was conducted to determine the suitability of water quality for fisheries management in Kaptai Lake from February 2019 to January 2020. Results showed that the temperature, transparency, TDS, pH, DO, EC, alkalinity and hardness were 20.9 to 31.8°C, 17 to 303 cm, 40 to 105 mg/L, 6.82 to 7.96, 6.1 to 7.65 mg/L, 75.33 to 172.33 µS/cm, 37 to 83 mg/L and 35 to 190 mg/L, respectively. However, nutrients as NH3, NO3-, NO2-, PO43- and SO42- were 0.01 to 0.05, 0.03 to 2.21, 36 to 96, 0.01 to 0.04 and 0.3 to 1.9 mg/L, respectively. Chlorophyll a and trophic state index (TSI) were 0.70 to 2.12 µg/L and 27.43 to 37.79, respectively. Study revealed that SO42-, DO and TDS were higher than the standard of ECR. On the other hand, NH3, NO3-, NO2-, PO43-, temperature, transparency, pH, EC, total hardness, total alkalinity, Chlorophyll a and TSI were within the standard levels. Concentrations of NO3-, NO2-, PO43-, Chlorophyll a and TSI (CHL) showed no significant variation with seasons. Conversely, TDS, transparency, EC, alkalinity, hardness, and SO42- were lower in monsoon compared to pre-monsoon and post-monsoon seasons. Besides, temperature, NH3, DO and TSI (SD) were higher in monsoon season. Results concluded that the Kaptai Lake is in mesotrophic condition with TSI (CHL) less than 40, and prominently there was a positive relationship between Chlorophyll a and Trophic State Index (TSI). In this regard, major nutrients and Chlorophyll a concentration in the Kaptai Lake may have an impact on the aquatic environment.


Environments ◽  
2019 ◽  
Vol 6 (6) ◽  
pp. 61 ◽  
Author(s):  
Alberto Quevedo-Castro ◽  
Erick R. Bandala ◽  
Jesús G. Rangel-Peraza ◽  
Leonel E. Amábilis-Sosa ◽  
Antonio Sanhouse-García ◽  
...  

A water quality study was carried out at the Adolfo López Mateos (ALM) reservoir, one of the largest tropical reservoirs in Mexico, located within an intensive agricultural region. In this study, the seasonal and spatial variations of nine water quality parameters were evaluated at four different sites along the reservoir semiannually over a period of seven years (2012–2018), considering the spring (dry) and fall (rainy) seasons. An analysis of variance was performed to compare the mean values of the water quality parameters for the different sampling sites. Then, a multiparametric classification analysis was carried out to estimate the spatial density of the sampling points by using a probabilistic neural network (PNN) classifier. The observations (seasonal and spatial) of the water quality parameters at the ALM reservoir revealed no significant influence. The trophic status was evaluated using the Carlson Modified Trophic State Index, finding the trophic state of the reservoir at the mesotrophic level, with nitrogen being the limiting nutrient. The PNN revealed neural interactions between total suspended solids (TSS) and the other four parameters, indicating that the concentration ranges of five parameters are equally distributed and classified.


2021 ◽  
Author(s):  
Nadeesha Dilani Hettige ◽  
Rohasliney Binti Hashim ◽  
Zulfa Hanan Ash’aari ◽  
Ahmad Abas Kutty ◽  
Nor Rohaizah Jamil

Abstract This study examined the influence of fish farming activities on water quality and benthic macroinvertebrates at the Rawang sub-basin of Selangor River. Multivariate statistical techniques were used to determine major influencing water quality parameters causing organic contamination and the dominant pollution-tolerant benthic macroinvertebrates. Sampling was conducted at Guntong River (SR1), Guntong River’s tributary (SR2, the control site), Kuang River (SR3 and SR6), Gong River (SR4), and Serendah River (SR5) using random sampling techniques based on accessibility and proximity to fish farms. Benthic macroinvertebrates and water samples were collected from April 2019 to March 2020. Based on the principal components analysis (PCA), electrical conductivity (EC), dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal-nitrogen, and total suspended solids (TSS) were major water quality parameters influenced by fish farming activities. The Canonical Correspondence Analysis (CCA) revealed that several taxa of benthic macroinvertebrates (Chironomidae, Naididae, Lumbriculidae, Tubificidae, unidentified Oligochaeta, Leeches (Helobdella sp.), Planorbidae, and some Odonata) were moderately or highly sensitive to TSS, BOD, COD, turbidity, ammoniacal-nitrogen, and EC. These taxa were dominant in the sampling sites, which were close to fish farms. Findings in this study showed that fish farming activities impacted the water quality and benthic macroinvertebrates in this sub-basin.


2014 ◽  
Vol 17 (2) ◽  
pp. 50-60
Author(s):  
Ky Minh Nguyen ◽  
Lam Hoang Nguyen

The aims of this research are to assess water quality by organic and nutrient matters and identifying the environmental pressures, examine the impact of the loads to Nhu Y River, Thua Thien-Hue Province. Five stations were sampled at Nhu Y River, the research had monitoring of water quality parameters such as Temperature (Temp), Dissolved Oxygen (DO), Biological Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Nitrate (NO3-) and Phosphate (PO43-). The research used multivariate statistical techniques such as correlation analysis, principal component analysis (PCA) and cluster analysis (CA) to assess water quality. The correlation analysis shown a strong positive correlation exists between water quality parameters such as TempDO and BOD5COD (p<0.01). The PCA technique was applied to water quality data sets, which was obtained from Nhu Y River and the results show that the indices which has changed water quality. The results of the PCA using a varimax rotation technique were illustrated with two principal components (PC) and accounts for 62.207% of the overall total variance. The first PC accounted for 40.873% of the total variance, which was loaded with Temp, DO, BOD5 and COD. The second PC consists of NO3- and PO43- which accounts for 21.334% of the total variance, it can be due to the discharge of agricultural activities. Similarly, the CA has identified two major clusters involving: BOD5, COD, Temp, DO (the first cluster) and NO3-, PO43- (the second cluster).


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3640
Author(s):  
Md Mamun ◽  
Usman Atique ◽  
Kwang-Guk An

Water quality degradation is one of the most pressing environmental challenges in reservoirs around the world and makes the trophic status assessment of reservoirs essential for their restoration and sustainable use. The main aims of this study were to determine the spatial variations in water quality and trophic state of 204 South Korean reservoirs at different altitude levels. The results demonstrated mean total phosphorus (TP), chlorophyll-a (CHL-a), total suspended solids (TSS), organic matter indicators (chemical oxygen demand: COD; total organic carbon: TOC), water temperature (WT), and electrical conductivity (EC) remain consistently higher in the very lowland reservoirs (VLLR) than those in other altitudes, due to sedimentary or alluvial watersheds. The average TP and CHL-a levels in VLLR crossed the limit of the eutrophic water, symptomizing a moderate risk of cyanobacterial blooms. Empirical models were developed to identify critical variables controlling algal biomass and water clarity in reservoirs. The empirical analyses of all reservoir categories illustrated TP as a better predictor of CHL-a (R2 = 0.44, p < 0.01) than TN (R2 = 0.02, p < 0.05) as well as showed strong P-limitation based on TN:TP ratios. The algal productivity of VLLR (R2 = 0.61, p < 0.01) was limited by phosphorus, while highland reservoirs (HLR) were phosphorus (R2 = 0.23, p < 0.03) and light-limited (R2 = 0.31, p < 0.01). However, TSS showed a highly significant influence on water clarity compared to TP and algal CHL-a in all reservoirs. TP and TSS explained 47% and 34% of the variance in non-algal turbidity (NAT) in HLR. In contrast, the TP and TSS variances were 18% and 29% in midland reservoirs (MLR) and 32% and 20% in LLR. The trophic state index (TSI) of selected reservoirs varied between mesotrophic to eutrophic states as per TSI (TP), TSI (CHL-a), and TSI (SD). Mean TSI (CHL-a) indicated all reservoirs as eutrophic. Trophic state index deviation (TSID) assessment also complemented the phosphorus limitation characterized by the blue-green algae (BGA) domination in all reservoirs. Overall, reservoirs at varying altitudes reflect the multiplying impacts of anthropogenic factors on water quality, which can provide valuable insights into reservoir water quality management.


Author(s):  
Cézar H. B. Rocha ◽  
Antoine P. Casquin ◽  
Renata O. Pereira

ABSTRACT The search for statistical techniques and forms of graphical representation that can explain the most relevant correlations among limnological variables can help interpret phenomena in a body of water. The objective of the article was to propose a graphical representation of the correlations among limnological variables applied in the contributing basin of the Dr. João Penido reservoir, in Juiz de Fora, Minas Gerais state, Brazil. Six sections were monitored monthly from May 2012 to April 2014, analysing 15 water quality parameters and their statistical correlations. The correlations were represented graphically with the program Gephi 0.8.2-beta. The influence of organic matter (of natural and anthropogenic origin resulting from pasture runoff and sewage) on water quality was verified, with an observed increase in water quality parameters especially nitrogen and phosphorous, oxygen consumed, chemical oxygen demand, turbidity and total suspended solids. It is concluded that the correlation chart assists in the understanding of the dynamics of the water quality parameters at the different sites analysed.


2017 ◽  
Vol 12 (4) ◽  
pp. 997-1008
Author(s):  
Kunwar Raghvendra Singh ◽  
Nidhi Bharti ◽  
Ajay S. Kalamdhad ◽  
Bimlesh Kumar

Abstract The pollution of surface water has become a global environmental issue. Monitoring of surface water is essential to know the current status of water quality and maintain it at certain desirable level. In this study surface water quality of Amingaon has been analysed. Amingaon is a locality in North Guwahati (Assam, India). In last few decades’ the locality has undergone rapid and uncontrolled development activities which have a detrimental impact on its ecology and environment. Samples were collected from 12 lakes and analysed for 24 parameters namely temperature (T), pH, electrical conductivity (EC), turbidity (Tur), total suspended solids (TSS) and total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), chloride ion (Cl−), fluoride (F−), sulphate (SO42−), sodium (Na+), potassium (K+), calcium (Ca2+), dissolved oxygen (DO) biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonium nitrogen (NH3-N), total Kjeldahl nitrogen (TKN), nitrate (NO3−) total phosphorus (TP) and available phosphorus (AP). Multivariate statistical techniques were used for the assessment of water quality. Cluster analysis (CA) was used for classification of water quality parameters and principal component analysis (PCA) was used to identify the sources of pollution. CA grouped all the water quality parameters in three cluster. PCA resulted in six useful components which explained 90.54% of the total variance. Based on overall study it was concluded that the sources of pollution of lakes were the use of fertilizers, storm water runoff, land development and domestic waste water discharge. Trophic state of lakes was also evaluated using Carlson's Trophic State Index (TSI).


2020 ◽  
Vol 20 (8) ◽  
pp. 3739-3751
Author(s):  
W. J. Zeng ◽  
J. H. Li ◽  
J. X. Wang ◽  
Y. Wang ◽  
L. Bao ◽  
...  

Abstract To study how water quality responds to land use types is of great significance in realizing effective control of non-point source pollution. This study built a response model of water quality to land use. The research results are as follows. First, the proportion of farmland is positively correlated to the total phosphorus (TP) value and biochemical oxygen demand (BOD) value, which indicates that the water quality deteriorates as the area of farmland increases. Second, the proportion of woodland is negatively correlated to the permanganate index, the trophic state index, total nitrogen (TN) value, TP value and BOD value, which means the water quality improves as the area of woodland increases. Third, the proportion of grassland is negatively correlated to the water quality indices and the correlation coefficient is large, which indicates that the water quality improves as the area of grassland increases. Fourth, the proportion of land used for buildings is positively correlated to the trophic state index and the chemical oxygen demand (COD) value at the 0.05 significance level, which means that the water quality deteriorates as the area of land for buildings increases. This study is expected to provide a basis for optimization of the land use and effective pollution control in the nine plateau lake watersheds.


2020 ◽  
Vol 1 (37) ◽  
pp. 78-88
Author(s):  
Giao Thanh Nguyen

The study aimed to assess the variation of surface water quality and evaluate the monitoring frequency at threecontinuous monitoring stations on the Tien river (MT1 station) and Hau river (MH1 and MH2 station) over a 10-year period (2009-2018), with a monitoring frequency of 12 times per year (monthly). The water quality variables comprised of temperature (oC), pH, dissolved oxygen (DO, mg/L), total suspended solids (TSS, mg/L), nitrate (N-NO- 3 , mg/L), orthophosphate (P-PO3 4- mg/L), chemical oxygen demand (COD, mg/L), and coliforms (MPN/100 mL). The individual water quality parameters were assessed by comparison with National Technical Regulation on surface water quality (QCVN 08-MT: 2015/BTNMT). Monitoring frequency was evaluatedusing Cluster Analysis (CA). The findings revealed that surface water on both Tien and Hau rivers was perpetually polluted with suspended solids, organic matter, nutrients, and microorganisms. The CA identified that the frequencies of current water monitoring could be reduced from 12 times to 5 times per year, resulting in a 58% reduction in monitoring costs. Future study should focus on evaluating water quality parameters toencompass all water quality characteristics in the Tien and Hau rivers. International collaboration with countries that impact the river before flowing into Vietnam in water management should be enhanced to solve continuing water problems.


Sign in / Sign up

Export Citation Format

Share Document