scholarly journals Spatio-Temporal Variations in Phytoplankton Communities in Sediment and Surface Water as Reservoir Drawdown—A Case Study of Pengxi River in Three Gorges Reservoir, China

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 340
Author(s):  
Wenjuan Ouyang ◽  
Zhe Li ◽  
Jixiang Yang ◽  
Lunhui Lu ◽  
Jinsong Guo

The resting stages of phytoplankton are usually regarded as the seed bank and source of harmful algal blooms because of the recruitment of phytoplankton from sediment to the water column under suitable environmental conditions. Information about resting stages of phytoplankton is abundant in shallow lakes and littoral sea; yet, studies on river–reservoir systems are rare. The river–reservoir continuum shows a unique structuring of longitudinal gradients of hydrological and hydrodynamic conditions. We hypothesized that the seed bank and algal blooms in reservoirs are influenced by the hydrodynamic conditions of each reservoir. We used Illumina Miseq sequencing to examine the spatio-temporal variation in the phytoplankton community in the sediment as reservoir drawdown and in surface water during algal blooms in Pengxi River, a tributary of China’s Three Gorges Reservoir. The results show that the cyanobacteria community in sediment is significantly influenced by temperature, total carbon, maximum flow velocity, and total phosphorous, the eukaryotic phytoplankton community in sediment is significantly influenced by total phosphorous, temperature, total carbon, maximum flow velocity, and total nitrogen. Additionally, the dominant species in sediment is significantly different from that in surface water during algal blooms. Our results suggest that the dominant species in surface water during algal blooms is more influenced by the environmental factors and hydrodynamic conditions in the water column than the seeds in the sediment. These findings are fundamental for further research on the influence of hydrodynamic conditions on algal blooms in artificially regulated river-reservoir systems.

1975 ◽  
Vol 10 (1) ◽  
pp. 33-41 ◽  
Author(s):  
J. Butcher ◽  
M. Boyer ◽  
CD. Fowle

Abstract Eleven small ponds, lined with polyethylene, were used to assess the consequences of applications of *DursbanR at 0.004, 0.030, 0.100 and 1.000 ppm and AbateR at 0.025 and 0.100 ppm active ingredient. The treated ponds showed a more pronounced long-term increase in pH and dissolved oxygen and decreasing total and dissolved carbon dioxide in comparison with untreated ponds. Algal blooms were of longer duration in treated ponds than in controls. Total photosynthetic productivity was higher in treated ponds but bacterial numbers did not change significantly. Photosynthetic productivity was estimated by following the changes in total carbon dioxide.


2020 ◽  
Author(s):  
Xingyue Li ◽  
Betty Sovilla ◽  
Chenfanfu Jiang ◽  
Johan Gaume

Abstract. Snow avalanches cause fatalities and economic damages. Key to their mitigation entails the understanding of snow avalanche dynamics. This study investigates the dynamic behaviors of snow avalanches, using the Material Point Method (MPM) and an elastoplastic constitutive law for porous cohesive materials. By virtue of the hybrid Eulerian-Lagrangian nature of MPM, we can handle processes involving large deformations, collisions and fractures. Meanwhile, the elastoplastic model enables us to capture the mixed-mode failure of snow, including tensile, shear and compressive failure. Using the proposed numerical approach, distinct behaviors of snow avalanches, from fluid-like to solid-like, are examined with varied snow mechanical properties. In particular, four flow regimes reported from real observations are identified, namely, cold dense, warm shear, warm plug and sliding slab regimes. Moreover, notable surges and roll-waves are observed peculiarly for flows in transition from cold dense to warm shear regimes. Each of the flow regimes shows unique flow characteristics in terms of the evolution of the avalanche front, the free surface shape, and the vertical velocity profile. We further explore the influence of slope geometry on the behaviors of snow avalanches, including the effect of slope angle and path length on the maximum flow velocity, the $\\alpha$ angle and the deposit height. Unified trends are obtained between the normalized maximum flow velocity and the scaled $\\alpha$ angle as well as the scaled deposit height, reflecting analogous rules with different geometry conditions of the slope. It is found the maximum flow velocity is mainly controlled by the friction between the bed and the flow, the geometry of the slope, and the snow properties. In addition to the flow behavior before reaching the deposition zone, which has long been regarded as the key factor governing the $\\alpha$ angle, we reveal the crucial effect of the stopping behavior in the deposition zone. Furthermore, our MPM model is benchmarked with simulations of real snow avalanches. The evolution of the avalanche front position and velocity from the MPM modeling shows reasonable agreement with the measurement data from literature. The MPM approach serves as a novel and promising tool to offer systematic and quantitative analysis for mitigation of gravitational hazards like snow avalanches.


2009 ◽  
Vol 6 (2) ◽  
pp. 2751-2793 ◽  
Author(s):  
M. J. Gauthier ◽  
M. Camporese ◽  
C. Rivard ◽  
C. Paniconi ◽  
M. Larocque

Abstract. A modelling study of the impacts of subsurface heterogeneity on the hydrologic response of an 8 km2 catchment in the Annapolis Valley (Eastern Canada) is reported. The study is focused in particular on the hydraulic connection and interactions between surface water and groundwater. A coupled (1-D surface/3-D subsurface) numerical model is used to investigate, for a range of scenarios, the spatio-temporal patterns of response variables such as return flow, recharge, groundwater levels, surface saturation, and streamflow. Eight scenarios of increasing geological complexity are simulated, introducing at each step more realistic representations of the geological strata and corresponding hydraulic properties. In a ninth scenario the effects of snow accumulation and snowmelt are also considered. The results show that response variables and significant features of the catchment (e.g., springs) can be adequately reproduced using a representation of the geology and model parameter values that are based on targeted fieldwork and existing databases, and that reflect to a sufficient degree the geological and hydrological complexity of the study area. The hydraulic conductivity values of the thin surficial sediment cover (especially till) and of the North Mountain basalts emerge as key elements of the basin's heterogeneity for properly capturing the overall catchment response.


2020 ◽  
Vol 12 (17) ◽  
pp. 2675
Author(s):  
Qianqian Han ◽  
Zhenguo Niu

Inland surface water is highly dynamic, seasonally and inter-annually, limiting the representativity of the water coverage information that is usually obtained at any single date. The long-term dynamic water extent products with high spatial and temporal resolution are particularly important to analyze the surface water change but unavailable up to now. In this paper, we construct a global water Normalized Difference Vegetation Index (NDVI) spatio-temporal parameter set based on the Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI. Employing the Google Earth Engine, we construct a new Global Surface Water Extent Dataset (GSWED) with coverage from 2000 to 2018, having an eight-day temporal resolution and a spatial resolution of 250 m. The results show that: (1) the MODIS NDVI-based surface water mapping has better performance compared to other water extraction methods, such as the normalized difference water index, the modified normalized difference water index, and the OTSU (maximal between-cluster variance method). In addition, the water-NDVI spatio-temporal parameter set can be used to update surface water extent datasets after 2018 as soon as the MODIS data are updated. (2) We validated the GSWED using random water samples from the Global Surface Water (GSW) dataset and achieved an overall accuracy of 96% with a kappa coefficient of 0.9. The producer’s accuracy and user’s accuracy were 97% and 90%, respectively. The validated comparisons in four regions (Qinghai Lake, Selin Co Lake, Utah Lake, and Dead Sea) show a good consistency with a correlation value of above 0.9. (3) The maximum global water area reached 2.41 million km2 between 2000 and 2018, and the global water showed a decreasing trend with a significance of P = 0.0898. (4) Analysis of different types of water area change regions (Selin Co Lake, Urmia Lake, Aral Sea, Chiquita Lake, and Dongting Lake) showed that the GSWED can not only identify the seasonal changes of the surface water area and abrupt changes of hydrological events but also reflect the long-term trend of the water changes. In addition, GSWED has better performance in wetland areas and shallow areas. The GSWED can be used for regional studies and global studies of hydrology, biogeochemistry, and climate models.


2019 ◽  
Vol 11 (12) ◽  
pp. 1425 ◽  
Author(s):  
Zhichao Li ◽  
Yujie Feng ◽  
Nadine Dessay ◽  
Eric Delaitre ◽  
Helen Gurgel ◽  
...  

Mediterranean coastal lagoons and their peripheral areas often provide a collection of habitats for many species, and they often face significant threats from anthropogenic activities. Diverse human activities in such areas directly affect the spatio-temporal dynamic of surface water and its ecological characteristics. Monitoring the surface water dynamic, and understanding the impact of human activities are of great significance for coastal lagoon conservation. The Regional Natural Park of Narbonne includes a typical Mediterranean lagoon complex where surface water dynamic and its potential link with local diverse human activities has not yet been studied. In this context, based on all the available Landsat images covering the study area during 2002–2016, this study identified the water and non-water classes for each satellite observation by comparing three widely used spectral indices (i.e., NDVI, NDWI and MNDWI) and using the Otsu method. The yearly water frequency index was then computed to present the spatio-temporal dynamic of surface water for each year, and three water dynamic scenarios were also identified for each year: permanent water (PW), non-permanent water (NPW) and non-water (NW). The spatial and inter-annual variation in the patterns of the three water scenarios were characterized by computing the landscape metrics at scenario-level quantifying area/edge, shape, aggregation and fragmentation. Finally, the quantitative link between different land use and land cover (LULC) types derived from the LULC maps of 2003, 2012 and 2015 and the surface water dynamic scenarios was established in each of the 300 m × 300 m grid cells covering the study area to determine the potential impact of human activities on the surface water dynamic. In terms of the inter-annual variation during 2002–2016, PW presented an overall stability, and NPW occupied only a small part of the water surface in each year and presented an inter-annual fluctuation. NPW had a smaller patch size, with lower connectivity degree and higher fragmentation degree. In terms of spatial variation during 2002–2016, NPW often occurred around PW, and its configurational features varied from place to place. Moreover, PW mostly corresponded to the natural lagoon, and salt marsh (as a part of lagoons), and NPW had a strong link with arable land (agricultural irrigation) and salt marsh (salt production), sand beach/dune, coastal wetlands and lagoon for the LULC maps of 2003, 2012 and 2015. However, more in-depth analysis is required for understanding the impact of sand beach/dune, coastal wetlands and lagoon on surface water dynamics. This study covers the long-term variations of surface water patterns in a Mediterranean lagoon complex having intense and diverse human activities, and the potential link between LULC types and the water dynamic scenarios was investigated on different dates. The results of the study should be useful for environmental management and protection of coastal lagoons.


2020 ◽  
Vol 12 (21) ◽  
pp. 3583
Author(s):  
Hui Yang ◽  
Gefei Feng ◽  
Ru Xiang ◽  
Yunjing Xu ◽  
Yong Qin ◽  
...  

Carbon dioxide (CO2) is a significant atmospheric greenhouse gas and its concentrations can be observed by in situ surface stations, aircraft flights and satellite sensors. This paper investigated the ability of the CO2 satellite observations to monitor, analyze and predict the horizontal and vertical distribution of atmospheric CO2 concentration at global scales. CO2 observations retrieved by an Atmospheric Infrared Sounder (AIRS) were inter-compared with the Global Atmosphere Watch Program (GAW) and HIAPER Pole-to-Pole Observations (HIPPOs), with reference to the measurements obtained using high-resolution ground-based Fourier Transform Spectrometers (FTS) in the Total Carbon Column Observing Network (TCCON) from near-surface level to the mid-to-high troposphere. After vertically integrating the AIRS-retrieved values with the column averaging kernels of TCCON measurements, the AIRS observations are spatio-temporally compared with HIPPO-integrated profiles in the mid-to-high troposphere. Five selected GAW stations are used for comparisons with TCCON sites near the surface of the Earth. The results of AIRS, TCCON (5–6 km), GAW and TCCON (1 km) CO2 measurements from 2007 to 2013 are compared, analyzed and discussed at their respective altitudes. The outcomes indicate that the difference of about 3.0 ppmv between AIRS and GAW or other highly accurate in situ surface measurements is mainly due to the different vertical altitudes, rather than the errors in the AIRS. The study reported here also explores the potential of AIRS satellite observations for analyzing the spatial distribution and seasonal variation of CO2 concentration at global scales.


Sign in / Sign up

Export Citation Format

Share Document