scholarly journals Evaluation of Rainfall-Triggered Debris Flows under the Impact of Extreme Events: A Chenyulan Watershed Case Study, Taiwan

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2201
Author(s):  
Jinn-Chyi Chen ◽  
Wen-Shun Huang

This study examined the conditions that lead to debris flows, and their association with the rainfall return period (T) and the probability of debris flow occurrence (P) in the Chenyulan watershed, central Taiwan. Several extreme events have occurred in the Chenyulan watershed in the past, including the Chi-Chi earthquake and extreme rainfall events. The T for three rainfall indexes (i.e., the maximum hourly rainfall depth (Im), the maximum 24-h rainfall amount (Rd), and RI (RI = Im× Rd)) were analyzed, and the T associated with the triggering of debris flows is presented. The P–T relationship can be determined using three indexes, Im, Rd, and RI; how it is affected and unaffected by extreme events was developed. Models for evaluating P using the three rainfall indexes were proposed and used to evaluate P between 2009 and 2020 (i.e., after the extreme rainfall event of Typhoon Morakot in 2009). The results of this study showed that the P‒T relationship, using the RI or Rd index, was reasonable for predicting the probability of debris flow occurrence.

2013 ◽  
Vol 13 (4) ◽  
pp. 1015-1023 ◽  
Author(s):  
J. C. Chen ◽  
C. D. Jan ◽  
W. S. Huang

Abstract. This paper reports the variation in rainfall characteristics associated with debris flows in the Chenyulan watershed, central Taiwan, between 1963 and 2009. The maximum hourly rainfall Im, the maximum 24 h rainfall Rd, and the rainfall index RI (defined as the product RdIm) were analysed for each rainfall event that triggered a debris flow within the watershed. The corresponding number of debris flows initiated by each rainfall event (N) was also investigated via image analysis and/or field investigation. The relationship between N and RI was analysed. Higher RI of a rainfall event would trigger a larger number of debris flows. This paper also discusses the effects of the Chi-Chi earthquake (CCE) on this relationship and on debris flow initiation. The results showed that the critical RI for debris flow initiation had significant variations and was significantly lower in the years immediately following the CCE of 1999, but appeared to revert to the pre-earthquake condition about five years later. Under the same extreme rainfall event of RI = 365 cm2 h−1, the value of N in the CCE-affected period could be six times larger than that in the non-CCE-affected periods.


2013 ◽  
Vol 13 (11) ◽  
pp. 2911-2926 ◽  
Author(s):  
J. Liu ◽  
S.-Y. Wang

Abstract. The aim of this study is to characterize the extreme rainfall event on 21–22 July 2012 in Beijing, and its impact on human vulnerability. Based on the available meteorological and rainfall data from Beijing meteorological stations and Surface Weather Observation Stations, the study draws hourly rainfall maps to simulate the rainfall amount and spatial distribution. Using these maps, this paper provides a quantitative analysis of the impact of the temporal and spatial characteristics of rainfall on the vulnerability of three population groups, according to age, gender and total number of victims. The results of three linear regression models indicate the different effects of extreme rainfall parameters on victims with different characteristics. The analysis of victim data in this extreme rainfall event represents the distribution and characteristics of victims in the eight affected districts, and concludes that the "vulnerable group" are males and adults in this extreme rainfall event. This paper is an initial effort to analyze the impact of an extreme rainfall event on the vulnerability of populations with different characteristics quantitatively, which can be used by stakeholders to prioritize the extreme rainfall event impact issues, and develop contingency plans to address and prevent the human and structural damages caused by the extreme rainfall events.


2012 ◽  
Vol 12 (5) ◽  
pp. 1539-1549 ◽  
Author(s):  
J. C. Chen ◽  
W. S. Huang ◽  
C. D. Jan ◽  
Y. H. Yang

Abstract. This study analyzed the variability in the number of rainfall events related to debris-flow occurrence in the Chenyulan stream watershed located in central Taiwan. Rainfall data between 1970 and 2009 measured at three meteorological stations nearby/in the watershed were collected and used to determine the corresponding regional average rainfall for the watershed. Data on debris-flow events between 1985 and 2009 were collected and used to study their dependence on regional average rainfall. The maximum 24-h regional rainfall Rd was used to analyze the number of rainfall events Nr, the number of rainfall events that triggered debris flows Nd, and the probability of debris-flows occurrences P. The variation trends in Nr, Nd and P over recent decades under three rainfall conditions (Rd > 20, 230, and 580 mm) related to debris-flow occurrence were analyzed. In addition, the influences of the Chi-Chi earthquake on Nd and P were presented. The results showed that the rainfall events with Rd > 20 mm during the earthquake-affected period (2000–2004) strongly responded to the increases in the average number of rainfall events that triggered debris flows and the average probability of debris-flows occurrences. The number of rainfall events with Rd > 230 mm (the lower boundary for the rainfall ever triggering debris flow before the Chi-Chi earthquake), and Rd > 580 mm (the lower boundary for extreme rainfall ever triggering numerous debris flows) in the Chenyulan stream watershed increased after 2000. The increase in the number of extreme rainfall events with Rd > 580 mm augmented the number of rainfall events ever triggering numerous debris flows in the last decade. The increase in both the number of rainfall events that ever triggered debris flows and the probability of debris-flow occurrences was greater in the last decade (2000–2009) than in 1990–1999.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xing-Long Gong ◽  
Xiao-Qing Chen ◽  
Kun-Ting Chen ◽  
Wan-Yu Zhao ◽  
Jian-Gang Chen

Compared with debris flows in other areas, debris flows in scenic areas not only seriously threaten residents, tourists, roads, walkways, and other infrastructure, but also cause considerable damage to the landscapes and ecosystems of these areas. Extreme rainfall events in the future will increase the complexities and challenges involved in debris flow control in scenic areas. Currently, the systematic planning of the entire scenic area is not considered in the treatment of debris flows. It is not possible to realize the rapid planning of any debris flow gully control project in a scenic area and to quantify the volume of debris flow material retained by each engineering structure. Based on field investigations and data collected from debris flow control projects in gullies in Jiuzhaigou Valley, China, an engineering planning method for debris flow control projects in scenic areas is herein proposed, and the challenges confronting existing control projects in scenic areas are discussed. Moreover, based on the example of Jiuzhaigou Valley, corresponding control engineering schemes for debris flow gullies in Xiajijie Lake Gully, Zhuozhui Gully, Xuan Gully, Pingshitou Gully, and West-Zhuozhui Gully are formulated. Four control modes for debris flow disasters in scenic areas are proposed, namely, “blocking + deposit stopping,” “deposit stopping,” “blocking,” and “drainage + deposit stopping,” which provide a systematic control strategy for post-earthquake debris flow disaster management in Jiuzhaigou Valley and other similar scenic areas.


2014 ◽  
Vol 2 (8) ◽  
pp. 5575-5601 ◽  
Author(s):  
S. S. Jeong ◽  
J. H. Kim ◽  
Y. M. Kim ◽  
D. H. Bae

Abstract. The influence of climate change on patterns has the potential to alter stability of partially saturated soil slopes. Changes in rainfall patterns have a strong influence on stability of partially saturated soil slopes, which recently have resulted in shallow landslides. In this paper, a comprehensive case study on the 2011 Umyeonsan (Mt.) landslides was highlighted. The incident involves the collapse of a soil slope and the debris flow under extreme-rainfall event, causing 16 fatalities and serious damaged to 146 housings. A fundamental study was carried out on the cause and mechanism of landslide/debris flow. An analytical method is developed for determining the failure mechanism of unsaturated soil slopes under extreme-rainfall, the effect of groundwater flow; the downward velocity of wetting front, and the upward velocity of groundwater level. Based on this, we propose the conceptual methodology of landslide design based on experimental tests and numerical analyses which consider the important mechanism of the combined effects of both groundwater flow and rainfall infiltration into the slope.


2012 ◽  
Vol 12 (7) ◽  
pp. 2209-2217 ◽  
Author(s):  
K. H. Hu ◽  
P. Cui ◽  
J. Q. Zhang

Abstract. A debris-flow catastrophe hit the city of Zhouqu, Gansu Province, western China, at midnight on 7 August 2010 following a local extreme rainfall of 77.3 mm h−1 in the Sanyanyu and Luojiayu ravines, which are located to the north of the urban area. Eight buildings damaged in the event were investigated in detail to study the characteristics and patterns of damage to buildings by debris flows. It was found that major structural damage was caused by the frontal impact of proximal debris flows, while non-structural damage was caused by lateral accumulation and abrasion of sediment. The impact had a boundary decreasing effect when debris flows encountered a series of obstacles, and the inter-positioning of buildings produced so-called back shielding effects on the damage. Impact, accumulation, and abrasion were the three main patterns of damage to buildings in this event. The damage scale depended not only on the flow properties, such as density, velocity, and depth, but also on the structural strength of buildings, material, orientation, and geometry. Reinforced concrete-framed structures can effectively resist a much higher debris-flow impact than brick-concrete structures. With respect to the two typical types of structure, a classification scheme to assess building damage is proposed by referring to the Chinese Classification System of Earthquake Damage to Buildings. Furthermore, three damage scales (major structural, minor structural, and non-structural damage) are defined by critical values of impact pressure. Finally, five countermeasures for effectively mitigating the damage are proposed according to the on-site investigation.


2011 ◽  
Vol 05 (05) ◽  
pp. 493-508 ◽  
Author(s):  
NING-SHENG CHEN ◽  
GUI-SHENG HU ◽  
MING-FENG DENG ◽  
WEI ZHOU ◽  
CHENG-LIN YANG ◽  
...  

This paper describes a study about the impact of earthquakes on debris flows with a focus on the Great Wenchuan Earthquake 2008 in China. The land form, precipitation, and source material are the three key factors for debris flow initiation in the Wenchuan surrounding area. Classifications and examples of four types of debris flow initiation triggering (gully triggering, slope triggering, liquefaction triggering, and gully erosion triggering) have been presented. The initiation mechanisms are attributed to hydraulic and geomechanical aspects. The actual debris flow cases linked with the Great Wenchuan Earthquake and other earthquakes in China have been used to illustrate the increased magnitudes of debris flows due to a large amount of loose materials created by the seismic actions. The critical precipitation for debris flows is reduced by the earthquake. It is predicted that the impact of the Great Wenchuan Earthquake on the local debris flows would be significant in the next 5–6 years, and much less in the following years (up to 20 years). Finally, the debris flow system will reach a relative stable stage. This prediction is based on the historical observations at other earthquake areas and the qualitative analysis on debris flow initiation mechanisms.


Author(s):  
Jinn-Chyi Chen ◽  
Jiang-Guao Jiang ◽  
Wien-Shun Huang ◽  
Yuan-Fan Tsai

Abstract. Rainfall and other extreme events often trigger debris flows. This study examines the debris flow initiation characteristics and probability of debris flow occurrence after extreme rainfalls. The Chenyulan watershed, central Taiwan, which has suffered from the Chi-Chi earthquake (CCE) and extreme rainfalls, was selected as a study area. The rainfall index (RI) was used to analyze the return period (T) and characteristics of debris flow occurrence after extreme rainfalls. The characteristics of debris flow occurrence included the variation in critical RI, threshold of RI for debris flow initiation, and recovery period (t0), the time required for the lowered threshold to return to the original threshold. The variations in critical RI after extreme rainfall and t0 associated with RI were presented. The critical RI threshold was reduced in the years following an extreme rainfall event. The reduction in RI as well as t0 were influenced by the RI. Reduced RI values showed an increasing trend over time, and it gradually return to initial RI. The empirical relationship between the probability of debris flow occurrence (P) and corresponding T of the rainfall characteristics for areas affected by extreme rainfalls and affected by the CCE were developed. Finally, a method for determining the P of a rainfall event was proposed based on the relationship between P and T. This method was successfully applied to evaluate the probability of debris flow occurrence after extreme rainfalls.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2314 ◽  
Author(s):  
Shu Wang ◽  
Anping Shu ◽  
Matteo Rubinato ◽  
Mengyao Wang ◽  
Jiping Qin

Non-homogeneous viscous debris flows are characterized by high density, impact force and destructiveness, and the complexity of the materials they are made of. This has always made these flows challenging to simulate numerically, and to reproduce experimentally debris flow processes. In this study, the formation-movement process of non-homogeneous debris flow under three different soil configurations was simulated numerically by modifying the formulation of collision, friction, and yield stresses for the existing Smoothed Particle Hydrodynamics (SPH) method. The results obtained by applying this modification to the SPH model clearly demonstrated that the configuration where fine and coarse particles are fully mixed, with no specific layering, produces more fluctuations and instability of the debris flow. The kinetic and potential energies of the fluctuating particles calculated for each scenario have been shown to be affected by the water content by focusing on small local areas. Therefore, this study provides a better understanding and new insights regarding intermittent debris flows, and explains the impact of the water content on their formation and movement processes.


Sign in / Sign up

Export Citation Format

Share Document