scholarly journals Effects of Imazapyr on Spartina alterniflora and Soil Bacterial Communities in a Mangrove Wetland

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3277
Author(s):  
Xue Mo ◽  
Panpan Dong ◽  
Lumeng Xie ◽  
Yujiao Xiu ◽  
Yanqi Wang ◽  
...  

The invasion of Spartina alterniflora (S. alterniflora) has caused serious damage to coastal wetland ecosystems in China, especially the mangrove wetlands in South China. This study aimed to validate the effect of imazapyr on S. alterniflora and soil. The controlled experiment was conducted in May 2021 at the Zhangjiangkou Mangrove Wetland Reserve. In the experiment, 25% (W) imazapyr was used, and six treatments were set up: 3035, 6070, and 9105 mL/acre 25% imazapyr and 1299, 2604, and 5202 mL/acre of AGE 809 + 6070 mL/acre 25% imazapyr. The results showed no side effects on mangrove plants in the spraying area. The highest control efficiency (95.9%) was given by 2604 mL/acre of AGE 809 + 6070 mL/acre 25% imazapyr. The residues of imazapyr in different soils were reduced to 0.10–0.59 mg/kg. The sequencing results showed no significant difference in the overall bacterial communities under different treatments (p > 0.05). The soil bacterial diversity in the samples with adjuvant was higher than that in the samples without adjuvant, while the abundance values were the opposite. There were 10 main communities (>0.3%) at phylum level in all soil samples, among which Proteobacteria, Bacteroidetes, Acidobacteria, Chloflexi, and Actinobacteria were the dominant communities, and the latter four’s abundance changed significantly (p < 0.05). There were significant abundance differences between the groups of oligotrophic and eutrophic bacteria. The redundancy analysis and Monte Carlo tests showed that the total organic carbon (TOC), total phosphorus (TP), available phosphorus (AP), ammonia nitrogen, and total nitrogen were the main factors affecting soil bacterial diversity. At the same time, TOC, AP, and TP were the most critical factors affecting the overall characteristics of soil bacterial communities in different treatments, while soil residues had no significant effect on bacteria. This might be due to the addition and degradation of imazapyr and the coverage of S. alterniflora. The best recommendation is 2604 mL/acre of AGE 809 + 6070 mL/acre 25% imazapyr to be applied in China’s mangrove wetland reserves and coastal wetlands.

Author(s):  
Xiaoli Zhou ◽  
Jingang Liang ◽  
Ying Luan ◽  
Xinyuan Song ◽  
Zhengguang Zhang

Returning straw to the soil is an effective way to improve the soil quality. As genetically modified (GM) crops experience expanded growing scales, returning straw to the soil could also be necessary. However, the impact of GM crop straws on soil safety remains unclear. The environment (including soil types, humidity and temperature) can result in a significant difference in the diversity of soil bacterial communities. Here, we compared the impacts of the straw from Bt maize IE09S034 (IE) and near-isogenic non-Bt maize Zong31 (CK) on soil bacterial community and microbial metabolic activity in three different environments. Sampling was carried out following 6–10 months of decomposition (May, June, July, and August) in three localities in Chinese cities (Changchun, Jinan, and Beijing). Our results showed that Bt maize residues posed no direct impact on soil bacterial communities in contrast to the environment and decomposed time. The microbial functional diversity and metabolic activity showed no significant difference between IE and CK. The results could be a reference for further assessing the effect of Bt maize residues on the soil that promotes the commercialisation of Bt maize IE09S034.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 878 ◽  
Author(s):  
Zoltán Mayer ◽  
Zita Sasvári ◽  
Viktor Szentpéteri ◽  
Beatrix Pethőné Rétháti ◽  
Balázs Vajna ◽  
...  

Soil microbial communities are involved in the maintenance of productivity and health of agricultural systems; therefore an adequate understanding of soil biodiversity plays a key role in ensuring sustainable use of soil. In the present study, we evaluated the influence of different cropping systems on the biodiversity of the soil bacterial communities, based on a 54-year field experiment established in Martonvásár, Hungary. Terminal restriction fragment length polymorphism (T-RFLP) fingerprinting technique was used to assess soil bacterial diversity and community structure in maize monoculture and three different crop rotations (maize–alfalfa, maize–wheat and the maize–barley–peas–wheat Norfolk type). No differences in richness and diversity were detected between maize monoculture and crop rotations except for the most intense rotation system (Norfolk-type). Although the principal component analysis did not reveal a clear separation between maize monoculture and the other rotation systems, the pairwise tests of analysis of similarity (ANOSIM) revealed that there are significant differences in the composition of bacterial communities between the maize monoculture and maize–alfalfa rotation as well as between wheat–maize and Norfolk-type rotation.


Diversity ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 217 ◽  
Author(s):  
Adenike Eunice Amoo ◽  
Olubukola Oluranti Babalola

Soil microbial communities are an important part of ecosystems that possess the capability to improve ecosystem services; however, several aspects of the ecology of forest soil bacterial communities are still unknown. Here, we investigated the impact of land-use change on soil bacterial communities and the soil characteristics. High-throughput sequencing was used to ascertain the bacterial diversity and canonical correspondence analysis was used to determine relationships between the bacterial communities and environmental variables. Our results show spatial heterogeneity in the distribution of the microbial communities and significant relationships between the microbes and soil characteristics (axis 1 of the canonical correspondence analysis (CCA) plot explained 64.55% of the total variance while axis 2 described 24.49%). Knowledge of this is essential as it has direct consequences for the functioning of the soil ecosystem.


2021 ◽  
Vol 9 (1) ◽  
pp. 139
Author(s):  
Quanchao Zeng ◽  
Shaoshan An

High-throughput sequencing is commonly used to study soil microbial communities. However, different primers targeting different 16S rRNA hypervariable regions often generate different microbial communities and result in different values of diversity and community structure. This study determined the consequences of using two bacterial primers (338f/806r, targeting the V3-V4 region, and 520f/802r, targeting the V4 region) to assess bacterial communities in the soils of different land uses along a latitudinal gradient. The results showed that the variations in the soil bacterial diversity in different land uses were more evident based on the former pair. The statistical results showed that land use had no significant impact on soil bacterial diversity when primer pair 520f/802r was used. In contrast, when primer pair 338f/806r was used, the cropland and orchard soils had significantly higher operational taxonomic units (OTUs) and Shannon diversity index values than those of the shrubland and grassland soils. Similarly, the soil bacterial diversity generated by primer pair 338f/806r was significantly impacted by mean annual precipitation, soil total phosphorus (TP), soil total nitrogen (TN), and soil available phosphorus (AVP), while the soil bacterial diversity generated by primer pair 520f/802r showed no significant correlations with most of these environmental factors. Multiple regression models indicated that soil pH and soil organic carbon (SOC) shaped the soil bacterial community structure on the Loess Plateau regardless of what primer pair was used. Climatic conditions mainly affected the diversity of rare bacteria. Abundant bacteria are more sensitive than rare bacteria to environmental changes. Very little of the variation in the rare bacterial community was explained by environmental factors or geographic distance, suggesting that the communities of rare bacteria are unpredictable. The distributions of the abundant taxa were mainly determined by variations in environmental factors.


2010 ◽  
Vol 76 (22) ◽  
pp. 7429-7436 ◽  
Author(s):  
Yuan Ge ◽  
Chengrong Chen ◽  
Zhihong Xu ◽  
Ram Oren ◽  
Ji-Zheng He

ABSTRACT The global atmospheric carbon dioxide (CO2) concentration is expected to increase continuously over the next century. However, little is known about the responses of soil bacterial communities to elevated CO2 in terrestrial ecosystems. This study aimed to partition the relative influences of CO2, nitrogen (N), and the spatial factor (different sampling plots) on soil bacterial communities at the free-air CO2 enrichment research site in Duke Forest, North Carolina, by two independent techniques: an entirely sequencing-based approach and denaturing gradient gel electrophoresis. Multivariate regression tree analysis demonstrated that the spatial factor could explain more than 70% of the variation in soil bacterial diversity and 20% of the variation in community structure, while CO2 or N treatment explains less than 3% of the variation. For the effects of soil environmental heterogeneity, the diversity estimates were distinguished mainly by the total soil N and C/N ratio. Bacterial diversity estimates were positively correlated with total soil N and negatively correlated with C/N ratio. There was no correlation between the overall bacterial community structures and the soil properties investigated. This study contributes to the information about the effects of elevated CO2 and soil fertility on soil bacterial communities and the environmental factors shaping the distribution patterns of bacterial community diversity and structure in temperate forest soils.


2011 ◽  
Vol 101 (7) ◽  
pp. 819-827 ◽  
Author(s):  
Hari Sudini ◽  
Mark R. Liles ◽  
Covadonga R. Arias ◽  
Kira L. Bowen ◽  
Robin N. Huettel

Soil bacterial communities have significant influence on soilborne plant pathogens and, thus, crop health. The present study focuses on ribotyping soil bacterial communities in different peanut-cropping sequences in Alabama. The objective was to identify changes in microbial assemblages in response to cropping sequences that can play a role in managing soilborne plant pathogens in peanut. Four peanut-cropping sequences were sampled at the Wiregrass Research Station, Headland, AL in 2006 and 2007, including continuous peanut, 4 years of bahiagrass followed by peanut, peanut-cotton, and peanut-corn-cotton. Soil sampling was done at early and mid-season and at harvest. Bacterial community structure was assessed using ribosomal intergenic spacer analysis (RISA) combined with 16S rRNA cloning and sequencing. RISA results indicated >70% dissimilarities among different cropping sequences. However, 90% similarities were noticed among replicated plots of the same cropping sequences. Cropping sequences and time of soil sampling had considerable effect on soil microbial community structure. Bahiagrass rotation with peanut was found to have the highest bacterial diversity, as indicated by a high Shannon Weaver Diversity index. Overall, higher bacterial diversity was observed with bahiagrass and corn rotations compared with continuous peanut. The bacterial divisions Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Actinomycetes were the predominant bacterial phyla found in all peanut-cropping sequences. The Proteobacteria taxa in these soils were negatively correlated with the abundance of members of division Firmicutes but, conversely, had a significant positive correlation with Gemmatimonadetes taxa. The prevalence of the division Actinomycetes was negatively correlated with the relative abundance of members of division Verrucomicrobia. These results indicate complex interactions among soil bacteria that are important contributors to crop health.


Author(s):  
Yinhong Hu ◽  
Weiwei Yu ◽  
Bowen Cui ◽  
Yuanyuan Chen ◽  
Hua Zheng ◽  
...  

Human disturbance and vegetation are known to affect soil microorganisms. However, the interacting effects of pavement and plant species on soil bacterial communities have received far less attention. In this study, we collected soil samples from pine (Pinus tabuliformis Carr.), ash (Fraxinus chinensis), and maple (Acer truncatum Bunge) stands that grew in impervious, pervious, and no pavement blocks to investigate the way pavement, tree species, and their interaction influence soil bacterial communities by modifying soil physicochemical properties. Soil bacterial community composition and diversity were evaluated by bacterial 16S amplicon sequencing. The results demonstrated that soil bacterial community composition and diversity did differ significantly across pavements, but not with tree species. The difference in soil bacterial community composition across pavements was greater in pine stands than ash and maple stands. Soil bacterial diversity and richness indices decreased beneath impervious pavement in pine stands, and only bacterial richness indices decreased markedly in ash stands, but neither showed a significant difference across pavements in maple stands. In addition, bacterial diversity did not differ dramatically between pervious pavement and no pavement soil. Taken together, these results suggest that pavement overwhelmed the effects of tree species on soil bacterial communities, and had a greater effect on soil bacterial communities in pine stands, followed by ash and maple stands. This study highlights the importance of anthropogenic disturbance, such as pavement, which affects soil microbial communities.


Sign in / Sign up

Export Citation Format

Share Document