scholarly journals Channel Migration of the Meandering River Fan: A Case Study of the Okavango Delta

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3319
Author(s):  
Xue Yan ◽  
Jinliang Zhang ◽  
Yang Li ◽  
Long Sun

Okavango delta is a typical distributive fluvial system, which is composed of a series of sand island-river-swamp networks. River migration in the Okavango delta is analyzed by using satellite images from Google Earth and Alaska Satellite Facility (ASF). Four configuration characterization parameters are selected to depict and measure the meandering river. These four parameters are sinuosity index (S), curvature (C), the difference of along-current deflection angle (Δθ) and expansion coefficient (Km). In the fan, the channel migration is mainly asymmetric. According to geomorphic elements and associated features, Okavango Delta can be subdivided into three zones: axial zone, median zone and distal zone. Under the influence of slope, climate and vegetation, different migration modes are developed in different zones. As the river moves downstream, the sinuosity index of the river on the Okavango Delta decreases downstream. Based on the characteristics of different zones, the sedimentary facies model of a single source distributive fluvial system of a meandering river is proposed. The models of channel migration and sedimentary facies have wide application. This research will not only provide a basis for the prediction of future river channels but will also provide important theoretical guidance for the study of the sedimentary morphology of underground reservoirs.

2017 ◽  
Vol 6 (2) ◽  
pp. 76 ◽  
Author(s):  
Le Chen ◽  
Zhipeng Lin ◽  
Taiju Yin ◽  
Jingfu Shan ◽  
Qianjun Sun ◽  
...  

The meandering process has always been the topic through years and still remains a lot of unsolved mysteries. One of the most important focus is the migration architectures and models that the meandering channels follow. This article chooses the Nowitna River as the study object of the typical meandering river with high migratory processes. Though the high-resolution historical satellite images by the techniques of Google Earth and ACME Mapper, 50 meanders in the river is studied and 6 of which are chosen for meticulous characterization. During the process, the planform structure of meandering channel is re-examined and 29 kinds of architecture elements are systematically established. More importantly, in order to make a fine quantitative characterization of the channel structure of meandering river, 5 kinds of characterization parameters are proposed, extraordinarily, the parameters of the difference of along-current deflection angle, a difference of counter-current deflection angle, and expansion coefficient, these three are firstly brought forward and applied introduction. In addition, the conception of sinuosity index and curvature are also different from the original definition. Though these architectures elements the meandering process and migration structure of the Nowitna River is demonstrated. 6 kinds of planform migration structures is revealed with the quantitative characterization of characterization parameters and 9 species of meandering channel migration patterns are concluded and discussed.


Author(s):  
O. P. Yermolaev ◽  
V. N. Golosov ◽  
M. V. Kumani ◽  
L. F. Litvin ◽  
I. I. Rysin ◽  
...  

Abstract. Quantitative assessments of soil loss from cultivated land and sediment redistribution along pathways from cultivated fields to river channels have been undertaken using a range of different methods and techniques, including erosion models, detailed studies of sediment redistribution in representative catchments, monitoring of gully head retreat and evaluation of sediment deposition in ponds and small reservoirs. Most of the sediment eroded from arable land is deposited between the lower portions of the cultivated slopes and the river channels. Less than 15% of the eroded sediment is delivered to the river channels. Sediment redistribution rates in the upper parts of the fluvial system have declined during the last 25 years in both the western and eastern parts of the Russian Plain, because of a major reduction of surface runoff during snowmelt and a reduction of the area of arable land in some parts of the study area.


2017 ◽  
Vol 4 (1) ◽  
pp. 85 ◽  
Author(s):  
Zhipeng Lin ◽  
Le Chen ◽  
Jingfu Shan ◽  
Tan Zhang ◽  
Qianjun Sun ◽  
...  

Currently, the recognition and research on the classification of fluvial types mainly focus on the description and results of a series of indicators, such as the plane shape and sediment characteristics. However, there is limited literacy about how to demonstrate the fluvial types from the depositional process, especially less on sequence model of inland fluvial. Thus, this paper aims o propose a new kind of sequence stratigraphic framework, which is able to reflect the fluvial processes under the perspective of sequence stratigraphy. Accordingly, we use the principle of concrete analysis for concrete problems by comprehensively summing up the previous classification schemes of river types. With the research method of sedimentation process, new fluvial systems tracts for fluvial are presented here, including four parts: low fluvial system tract (LFST), advancing fluvial system tract (AFST), flooding fluvial system tract (FFST), receding fluvial system tract (RFST). Moreover, these could be applied to tackle the problem of the traditional division of fluvial. Various rivers have the different characteristics of systems tracts, then this may play a vital role in the discrimination of meandering river, braided river, anastomosing river and branched river. This study embodies the philosophical thought of Process Sedimentology and may contribute to revealing the deposition process of the fluvial system more profoundly from the aspect of genetic mechanism and evolution course. Most importantly, the fluvial classification system is definitely improved from the description stage to a complete rational stage.


1970 ◽  
Vol 12 ◽  
pp. 1-16
Author(s):  
Naresh Kazi Tamrakar ◽  
Pramila Shrestha ◽  
Surendra Maharjan

Lake marginal sedimentation prevailed around the Paleo-Kathmandu Lake. Owing to the difference in local basin conditions; tectonics, source rock types and river systems therein, the lake marginal environments and sedimentary facies associations differ around the Paleo-Kathmandu Lake. In this study, the basin-fill sediments of southwestern margin of the Kathmandu Basin were studied for the sediments recorded in vertical sequences at various localities and facies analysis was made. Mainly eight facies were recognised. They were matrix-supported massive gravel (Gmm), matrix-supported graded gravel (Gmg), gravelly fine or mud (GF), massive silt (Fsm), massive mud (Fm), ripple-laminated silt or laminated silt/mud/clay (Fl), carbonaceous clay (C), and incipient soil with roots (Fr). Four facies associations that were identified were proximal fan-delta facies association (FA1), mid fan-delta facies associaiton (FA2), distal fan-delta facies association (FA3), and gravelly sinuous river facies association (FA4). Remarkably, these facies associations do not contain any sandy facies and foreset bedding of Gilbert-type. The fan-delta region was characterised by flood-dominated flows and vertical accretion of fines in the flood basins, and vegetated swamps rich in organic sediments. The distribution of facies associations suggests extensive lake transgression followed by rapid lake regression. The recent river system then incised the valley against local upliftment due to faulting or lowering of base level of the main river in the Kathmandu Basin probably related to draining out of the lake water. doi: Bulletin of the Department of Geology, Vol. 12, 2009, pp. 1-16


2013 ◽  
Vol 63 (2) ◽  
pp. 175-199 ◽  
Author(s):  
Artur Kędzior ◽  
Mihai E. Popa

Abstract Kędzior, A. and Popa, E.M. 2013. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania. Acta Geologica Polonica, 63 (2), 175-199. Warszawa. The continental, coal bearing Steierdorf Formation, Hettangian - Sinemurian in age, is included in the Mesozoic cover of the Reşiţa Basin, Getic Nappe, South Carpathians, Romania. The Steierdorf Formation can be studied in Anina, a coal mining center and an exceptional locality for Early Jurassic flora and fauna, occurring in the middle of the Reşiţa Basin. This paper presents the results of sedimentological, stratigraphical and paleobotanical researches undertaken in Colonia Cehă open cast mine in Anina, where the Steierdorf Formation outcrops widely. Several sedimentary facies associations have been described, these associations permitting the reconstruction of various depositional systems such as alluvial fans, braided and meandering river systems, as well as lacustrine and coal generating marsh systems of the Steierdorf Formation. The sedimentary associations recorded within the Steierdorf Formation show a gradual fining upward trend, pointing to a rising marine water table and a decreasing relief within the source area.


2018 ◽  
Vol 10 (8) ◽  
pp. 1283 ◽  
Author(s):  
Cheng-Chien Liu ◽  
Ming-Chang Shieh ◽  
Ming-Syun Ke ◽  
Kung-Hwa Wang

This paper reviews the efforts made and experiences gained in developing the Flood Prevention and Emergency Response System (FPERS) powered by Google Earth Engine, focusing on its applications at the three stages of floods. At the post-flood stage, FPERS integrates various remote sensing imageries, including Formosat-2 optical imagery to detect and monitor barrier lakes, synthetic aperture radar imagery to derive an inundation map, and high-spatial-resolution photographs taken by unmanned aerial vehicles to evaluate damage to river channels and structures. At the pre-flood stage, a huge amount of geospatial data are integrated in FPERS and are categorized as typhoon forecast and archive, disaster prevention and warning, disaster events and analysis, or basic data and layers. At the during-flood stage, three strategies are implemented to facilitate the access of the real-time data: presenting the key information, making a sound recommendation, and supporting the decision-making. The example of Typhoon Soudelor in August of 2015 is used to demonstrate how FPERS was employed to support the work of flood prevention and emergency response from 2013 to 2016. The capability of switching among different topographic models and the flexibility of managing and searching data through a geospatial database are also explained, and suggestions are made for future works.


2018 ◽  
Vol 69 (2) ◽  
pp. 129-148 ◽  
Author(s):  
George Ajdanlijsky ◽  
Annette E. Götz ◽  
André Strasser

AbstractSedimentary facies and cycles of the Triassic continental–marine transition of NW Bulgaria are documented in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya. The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle Triassic in NW Bulgaria.


Author(s):  
B. Kalantar ◽  
M. H. Ameen ◽  
H. J. Jumaah ◽  
S. J. Jumaah ◽  
A. A. Halin

Abstract. This work studies the meandering and change of paths along the Zab River in Iraq. Landsat-5 TM, Landsat-7 ETM+ and Landsat-8 (2-sets) images were acquired from the years 1989, 1999, 2015 and 2019, respectively, which were used together with Remote sensing and Geographic Information Systems (GIS) techniques to study the changes. To determine the river/stream shape, the Sinuosity Index was calculated to classify Zab River segments into either the straight, sinuous or meandering class. Our findings via image analysis show coarse river migration and that most river segments fall into the two classes of sinuous and meander. In addition, it seems that the east bank of the Zab River region of the basin has extremely shifted where the river passes near the Kirkuk governorate.


Author(s):  
Muhammad Irham

Dynamic interactions of hydrological and geomorphological processes in the fluvial system result in accumulated deposit on the bed because the capacity to carry sediment has been exceeded. The bed load of the Aceh fluvial system is primarily generated by mechanical weathering resulting in boulders, pebbles, and sand, which roll or bounce along the river bed forming temporary deposits as bars on the insides of meander bends, as a result of a loss of transport energy in the system. This dynamic controls the style and range of deposits in the Aceh River. This study focuses on the spatial distribution of bed-load transport of the Aceh River. Understanding the spatial distribution of deposits facilitates the reconstruction of the changes in controlling factors during accumulation of deposits. One of the methods can be done by sieve analysis of sediment, where the method illuminates the distribution of sediment changes associated with channel morphology under different flow regimes. Hence, the purpose of this mini review is to investigate how the sediment along the river meander spatially dispersed. The results demonstrate that channel deposits in the Aceh River are formed from four different type of materials: pebble deposited along upstream left bank; sand located on the upstream, downstream, and along meander belts; and silt and clay located along the cut bank of meander bends. Because of different depositional pattern, the distribution of the sediment along the river can be used as a surrogate to identify bank stability, as well as to predict critical geometry for meander bend initiation


Author(s):  
D. Ongeri ◽  
B. K. Kenduiywo

Abstract. Forest fire is one of the most serious environmental problems in Kenya that influences human activities, climate change and biodiversity. The main goal of this study is to apply medium resolution sensors (Landsat 8 OLI and Sentinel 2 MSI) to produce burnt area severity maps that will include small fires (< 100 ha) in order to improve burnt area detection and mapping in Kenya. Normalized burnt area indices were generated for specified pre- and post-fire periods. The difference between pre- and post-fire Normalized Burnt Ration (NBR) was used to compute δNBR index depicting forest disturbance by fire events. Thresholded classes were derived from the computed δNBR indices to obtain burnt severity maps. The spatial and temporal agreements of the Burnt area detection dates were validated by comparing against the MODIS MCD641 500 m products and MODIS Fire Information for Resource Management System (FIRMS) 1 km daily product hot-spot acquisition dates. This approach was implemented on Google Earth Engine (GEE) platform with a simple user interface that allows users to auto-generate burnt area maps and statistics. The operational GEE application developed can be used to obtain burnt area severity maps and statistics that allow for initial accurate approximation of fire damage.


Sign in / Sign up

Export Citation Format

Share Document