scholarly journals Simulation-Optimization Model for Conjunctive Management of Surface Water and Groundwater for Agricultural Use

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3444
Author(s):  
Agbortoko Bate Ashu ◽  
Sang-Il Lee

The conjunctive management of surface water and groundwater resources is essential to sustainably manage water resources. The target study is the Osan watershed, in which approximately 60–70% of rainfall occurs during the summer monsoon in Central South Korea. Surface water resources are overexploited six times as much as groundwater resources in this region, leading to increasing pressure to satisfy the region’s growing agricultural water demand. Therefore, a simulation-optimization (S-O) model at the sub-basin scale is required to optimize water resource allocation in the Osan watershed. An S-O model based on an artificial neural network (ANN) model coupled with Jaya algorithm optimization (JA) was used to determine the yearly conjunctive supply of agricultural water. The objective was to minimize the water deficit in the watershed subject to constraints on the cumulative drawdown in each subarea. The ANN model could predict the behaviour of the groundwater level and facilitate decision making. The S-O model could minimize the water deficit by approximately 80% in response to the gross water demand, thereby proving to be suitable for a conjunctive management model for water resource management and planning.

Water Policy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 211-222
Author(s):  
Lae-Soo Kang ◽  
Se-Yeong Hamm ◽  
Jae-Yeol Cheong ◽  
Hang-Tak Jeon ◽  
Jae Hyun Park

Abstract The demand for water resources is consistently increasing due to industrialization and urbanization. Water resource management can become difficult because of climate change and social issues. Due to the difficulty in securing stable water resources, reasonable utilization and management of water is crucial for the sustainable development of groundwater resources that are an efficient alternative to surface water. For groundwater management, the National Groundwater Information Management Service (GIMS) Center for K-Water measures groundwater data hourly (groundwater level, water temperature, and electrical conductivity) at national groundwater monitoring stations and analyzes the long-term variation of groundwater with regard to climate change. According to the Groundwater Act (1993), auxiliary groundwater monitoring stations for groundwater use and water quality are activated by local governments. The observed data after the calibration process are provided for utilization by citizens, industries, schools, institutes, and government policies through annual reports on groundwater monitoring by the GIMS Center. In 2018, the Korean government merged water resources affairs that were once divided between the Ministry of Environment and the Ministry of Land, Infrastructure, and Transport. The change will be favorable for effective management of the surface water and groundwater resources as well as ensuring both quality and quantity.


2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


Author(s):  
Shangming Jiang ◽  
Shaowei Ning ◽  
Xiuqing Cao ◽  
Juliang Jin ◽  
Fan Song ◽  
...  

Due to the importance and complexity of water resources regulations in the pond irrigation systems of the Jiang-Huai hilly regions, a water allocation simulation model for pond irrigation districts based on system simulation theory was developed in this study. To maximize agricultural irrigation benefits while guaranteeing rural domestic water demand, an optimal water resources regulation model for pond irrigation districts and a simulation-based optimal water resources regulation technology system for the pond irrigation system were developed. Using this system, it was determined that the suitable pond coverage rate (pond capacity per unit area) was 2.92 × 105 m3/km2. Suitable water supply and operational rules for adjusting crop planting structure were also developed the water-saving irrigation method and irrigation system. To guarantee rural domestic water demand, the multi-year average total irrigation water deficit of the study area decreased by 4.66 × 104 m3/km2; the average multi-year water deficit ratio decreased from 20.40% to 1.18%; the average multi-year irrigation benefit increased by 1.11 × 105 RMB (16,128$)/km2; and the average multi-year revenue increased by 6.69%. Both the economic and social benefits were significant. The results of this study provide a theoretical basis and technological support for comprehensive pone governance in the Jiang-Huai hilly regions and promote the establishment of a water allocation scheme and irrigation system for pond irrigation districts, which have practical significance and important application value.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3534
Author(s):  
Bofan Wang ◽  
Yutong Tian ◽  
Xuanjin Li ◽  
Chunhui Li

In addition to the social economy and the rapid development of industry and agriculture, water demand is increasing and poses challenges in the over-exploitation of water resources. This research establishes a model to assess the sustainable exploitation of water resources based on system dynamics theory and STELLA software, which solves the imbalanced allocation of industrial water, agricultural water and domestic water. The model is composed of two parts: the water quantity system (including economy, population, water availability and water demand) and the water quality system (composed of the aquatic environment), which is suitable for Chengde City with a water resource shortage. The proposed model is established by data of Chengde City from 2007 to 2016 and is verified by 2017 data. Furthermore, in order to compare the water quality and water utilization of Chengde City under different development scenarios up to 2025, the sensitivity analysis of each variable (e.g., population) is carried out in this model, and thereby the water resource utilization scenarios are acquired. Specifically, four scenarios are designed and denoted: Scenario 1: keeping the status quo unchanged, Scenario 2: slowing down economic development and devoting more energy to environmental protection, Scenario 3: only focusing more on economic development and Scenario 4: aiming at steady and rapid economic growth and an eco-friendly environment. The results shows that Scenarios 2 and 3 facilitate high-effective water resource utilization compared with the current development, Scenario 1. Scenario 4 fosters the balance of water resources supply–demand in the future and preserves the water quality. This study provides an inspiring method for realizing the sustainable utilization and optimizing allocation of water resources in Chengde City.


2017 ◽  
Vol 33 (1) ◽  
pp. 131-140
Author(s):  
Zygmunt Miatkowski ◽  
Karolina Smarzyńska

AbstractThe goal of the paper was to determine surface water resources of an agricultural watershed representative for the areas of intensive crop production in the Kujawy region. This area is characterised by the lowest average annual precipitation in Poland and high water demands related to the intensive crop production.Hydrological studies were carried out in 2007–2011 in the upper Zgłowiączka River watershed located in the eastern part of the analysed region. Over 90% of the study area is used as an arable land.Water velocity in the river bed and water level were measured at the outlet of the watershed in the river cross-section Samszyce.The upper Zgłowiączka River has a snow-rainfall hydrological regime, strongly modified by anthropogenic activities related to the intensive crop production and installation of subsurface drainage system. The study period was characterised by very large temporal variability of hydrological conditions. The mean annual outflow coefficient amounted to 18% and varied highly in time: from 3% in the average years to 62% in the abnormally wet 2011. Average discharge (SSQ) in the Samszyce river cross-section was equal to 0.25 m3·s−1, and the mean unit outflow – to 3.2 dm3·s−1·km−2. The results of the study show that disposable surface water resources of the Kujawy region are very small, especially in the summer half-year. Thus, their utilization as a potential source of water for crop irrigation can be taken into account only, if water excesses will be retained within the watershed and used in conjunction with groundwater resources.


Author(s):  
Arezoo Boroomandnia ◽  
Omid Bozorg-Haddad ◽  
Jimmy Yu ◽  
Mariam Darestani

Abstract Fast-growing water demand, population growth, global climate change, and water quality deterioration all drive scientists to apply novel approaches to water resource management. Nanotechnology is one of the state-of-the-art tools in scientists’ hands which they can use to meet human water needs via reuse of water and utilizing unconventional water resources. Additionally, monitoring water supply systems using new nanomaterials provides more efficient water distribution networks. In this chapter, we consider the generic concepts of nanotechnology and its effects on water resources management strategies. A wide range of nanomaterials and nanotechnologies, including nano-adsorbents, nano-photocatalysts, and nano-membranes, are introduced to explain the role of nanotechnology in providing new water resources to meet growing demand. Also, nanomaterial application as a water alternative in industry, reducing water demand in the industrial sector, is presented. Another revolution made by nanomaterials, also discussed in this chapter, is their use in water supply systems for monitoring probable leakage and leakage reduction. Finally, we present case studies that clarify the influence of nanotechnology on water resources and their management strategies. These case studies prove the importance and inevitable application of nanotechnology to satisfy the rising water demand in the modern world, and show the necessity of nanotechnology awareness for today's water experts.


Author(s):  
G. J. Pronk ◽  
S. F. Stofberg ◽  
T. C. G. W. Van Dooren ◽  
M. M. L. Dingemans ◽  
J. Frijns ◽  
...  

AbstractWater reuse has the potential to substantially reduce the demand on groundwater and surface water. This study presents a method to evaluate the potential of water reuse schemes in a regional context and demonstrates how water reuse propagates through the water system and potentially reduces pressure on groundwater resources. The use of Sankey diagram visualisation provides a valuable tool to explore and evaluate regional application of water reuse, its potential to reduce groundwater and surface water demand, and the possible synergies and trade-offs between sectors. The approach is demonstrated for the Dutch anthropogenic water system in the current situation and for a future scenario with increased water demand and reduced water availability due to climate change. Four types of water reuse are evaluated by theoretically upscaling local or regional water reuse schemes based on local reuse examples currently in operation in the Netherlands or Flanders: municipal and industrial wastewater effluent reuse for irrigation, effluent reuse for industrial applications, and reuse for groundwater replenishment. In all cases, water reuse has the potential to significantly reduce groundwater extraction volume, and thus to alleviate the pressure on the groundwater system. The water-quantity based analysis is placed in the context of water quality demands, health and safety aspects, technological requirements, regulations, public perception, and its net impact on the environment. This integrative context is essential for a successful implementation of water reuse in practice.


Sign in / Sign up

Export Citation Format

Share Document