scholarly journals Groundwater monitoring system and groundwater policy in relation to unified water resource management in Korea

Water Policy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 211-222
Author(s):  
Lae-Soo Kang ◽  
Se-Yeong Hamm ◽  
Jae-Yeol Cheong ◽  
Hang-Tak Jeon ◽  
Jae Hyun Park

Abstract The demand for water resources is consistently increasing due to industrialization and urbanization. Water resource management can become difficult because of climate change and social issues. Due to the difficulty in securing stable water resources, reasonable utilization and management of water is crucial for the sustainable development of groundwater resources that are an efficient alternative to surface water. For groundwater management, the National Groundwater Information Management Service (GIMS) Center for K-Water measures groundwater data hourly (groundwater level, water temperature, and electrical conductivity) at national groundwater monitoring stations and analyzes the long-term variation of groundwater with regard to climate change. According to the Groundwater Act (1993), auxiliary groundwater monitoring stations for groundwater use and water quality are activated by local governments. The observed data after the calibration process are provided for utilization by citizens, industries, schools, institutes, and government policies through annual reports on groundwater monitoring by the GIMS Center. In 2018, the Korean government merged water resources affairs that were once divided between the Ministry of Environment and the Ministry of Land, Infrastructure, and Transport. The change will be favorable for effective management of the surface water and groundwater resources as well as ensuring both quality and quantity.

Author(s):  
Rajan Janardhanan

The world faces an unprecedented crisis in water resources management, with profound implications for global food security, protection of human health, and maintenance of all ecosystems on Earth. Large uncertainties still plague quantitative assessments of climate change impacts and water resource management, but what is known for certain is that the climate is changing and that it will have an effect on water resources. Therefore, increased efforts will be needed to plan and manage water supplies in the future through increased monitoring and understanding of the interrelationships between population size, climate change, and water availability. The focus of water management is gradually shifting from developing new water sources to using existing water sources more effectively and efficiently. The world needs policy change in water management. Respect for water resources and their value is the starting point of deliberations. Governments have the essential water management function: to protect and allocate water resources to allow both individual and collective interests to benefit from water. Societies must also lead in understanding, provisioning for mitigating the impact of disasters, ranging from extreme droughts to unprecedented floods, caused by climate change and poor management of water and land. Public funds will likely remain the main source of water sectoral funding. It is up to governments to invest wisely to enhance the crucial role that water has for social and economic development in a country. Integrated water resource management strategy is accepted as a global model for achieving the objective of a sustainable water management system.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Wycliffe Tumwesigye ◽  
Majaliwa Mwanjalolo Jackson-Gilbert

Fresh water resources and limited across the globe. They are threatened by agriculture, economic development and climate change. Measure to sustainably manage water resources are not well documented. This review aimed at analyzing publications from 2000-2019 regarding stakeholders’ involvement as a key for sustainable water resource management. Literature search was conducted using key words: integrated water resource management; transboundary water resource management; collaborative water resource management; Multistakeholder water resource management; challenges and opportunities of water resource management; domestic water saving; sustainable water resource management from Science Direct database, ResearchGate professional network and Google School Search engine. 280 publications were retrieved from which 150 were found relevant, were read and used during the publication of this paper. It was found that climate change, population explosion, economic development all threaten water resources management and involvement of all stakeholders, transboundary agreements, collaboration with international water agencies and financial investment were recommended for sustainable water resource management.


2015 ◽  
Vol 5 (1) ◽  
pp. 47
Author(s):  
Soto-Montes Gloria ◽  
Herrera-Pantoja Marina

<p class="emsd"><span lang="EN-GB">More than half of the world’s population currently lives in urban areas. The fastest growing megacities are occurring mainly in developing countries, where stresses on water systems already pose major challenges for governments and water utilities. Climate change is expected to further burden water resource management, putting at risk governments’ ability to guarantee secure supplies and sustainable development. In this study, the significance of assessing the implications of climate change on water resources in megacities as an important component of the adaptation process is explored. The Mexico City Metropolitan Area (MCMA), one of the largest cities in the world, is presented as a case study. The downscaled outputs of the General Circulation Model GFDLCM2a for the A1B and B1 gas emissions scenarios for the period 2046–2081 and a statistical model were used to simulate the likely impacts of climate change in water resources and domestic water demand. The results showed that an increase in temperature and changes in precipitation patterns could increase household water demand for both scenarios, between 0.8% and 6.3% in the MCMA. The future projections also estimated increases of 150% and 200% in events with rainfall intensity of more than 60 mm d<sup>-1</sup> and 70 mm d<sup>-1</sup> respectively, drawing attention to the critical impacts these changes may have on flood events. Despite the uncertainty of models projections, future climate change scenarios have proven to be a flexible guide to identify vulnerabilities of water resources and support strategic adaptation planning. In order to increase their adaptive capacity and resilience to the effects of an uncertain climate change, megacities should consider implementing an integrated water resources management approach that creates opportunities through adequate policies, new technologies, flexible frameworks and innovative actions. </span></p>


2019 ◽  
Vol 11 (22) ◽  
pp. 6463 ◽  
Author(s):  
Li ◽  
Yin ◽  
Zhang ◽  
Croke ◽  
Guo ◽  
...  

The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.


Author(s):  
R. T. Montes-Rojas ◽  
J. E. Ospina-Noreña ◽  
C. Gay-García ◽  
C. Rueda-Abad ◽  
I. Navarro-González

Author(s):  
V Shinju ◽  
Aswathi Prasad

The natural resources are repository for the survival of all of us, so they must be used efficiently to meet the present needs while conserving them for future generations. An action to develop capacities from global to household levels for their sustainable management and regulation is required henceforth. Of these natural resources, water resources are most precious. If there is no water; there would be no life on earth. Since ‘water is the elixir of life’, water resource management has been considered as one of the most relevant areas of intervention. Understanding the gender dimensions of water resource management is a starting point for reversing the degradation of water resources. Women play an important role here since they have to access the water resources for almost all the activities on a daily basis. As the women are the strong social agents, effective and improved water preservation techniques could be achieved through their empowerment that may eventually lead to the well-being of the households in particular and of the community in general. Therefore, the major research question posed in this study is to analyze the role of women in the preservation and management of water, an inevitable, precious but diminishing natural resource. The study also intends to describe the relationship between the three ‘W's-Women, Water & Well-being. Both qualitative and quantitative approaches are essential here as it is a contingent issue in the present scenario. Psychological dimensions were also explored since the issue is affecting the routine life of the community. The case study of women belonging to the Kuttadampadam region was done to explain the role of women in preserving water resources in the areas affecting severe water scarcity.


Author(s):  
P. Pallavi ◽  
Shaik Salam

Water is an important, but often ignored element in sustainable development by now it has been clear that urgent action is needed to avoid global water crisis. Water resource management is the activity of planning, developing, distributing and managing the optimum use of water resources. Successful management of water resources requires accurate knowledge of their resource distribution to meet up the competing demands and mechanisms to make good decisions using advanced recent technologies.Towards evolving comprehensive management plan in suitable conservation and utilization of water resources space technology plays a crucial role in managing country’s available water resources. Systematic approaches involving judicious combination of conventional server side scripting programming and remote sensing techniques pave way for achieving optimum planning and operational of water resources projects.   new methodologies and 24/7 accessible system need to be built, these by reducing the dependency on complex infrastructure an specialist domain Open source web GIS systems have proven their rich in application of server side scripting and easy to use client application tools. Present study and implementation aims to provide wizard based or easily driven tools online for command area management practices. In this large endeavour modules for handling remote sensing data, online raster processing, statistics and indices generation will be developed.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2642 ◽  
Author(s):  
Thuc D. Phan ◽  
James C. R. Smart ◽  
Ben Stewart-Koster ◽  
Oz. Sahin ◽  
Wade L. Hadwen ◽  
...  

Bayesian networks (BNs) are widely implemented as graphical decision support tools which use probability inferences to generate “what if?” and “which is best?” analyses of potential management options for water resource management, under climate change and socio-economic stressors. This paper presents a systematic quantitative literature review of applications of BNs for decision support in water resource management. The review quantifies to what extent different types of data (quantitative and/or qualitative) are used, to what extent optimization-based and/or scenario-based approaches are adopted for decision support, and to what extent different categories of adaptation measures are evaluated. Most reviewed publications applied scenario-based approaches (68%) to evaluate the performance of management measures, whilst relatively few studies (18%) applied optimization-based approaches to optimize management measures. Institutional and social measures (62%) were mostly applied to the management of water-related concerns, followed by technological and engineered measures (47%), and ecosystem-based measures (37%). There was no significant difference in the use of quantitative and/or qualitative data across different decision support approaches (p = 0.54), or in the evaluation of different categories of management measures (p = 0.25). However, there was significant dependence (p = 0.076) between the types of management measure(s) evaluated, and the decision support approaches used for that evaluation. The potential and limitations of BN applications as decision support systems are discussed along with solutions and recommendations, thereby further facilitating the application of this promising decision support tool for future research priorities and challenges surrounding uncertain and complex water resource systems driven by multiple interactions amongst climatic and non-climatic changes.


Sign in / Sign up

Export Citation Format

Share Document