scholarly journals Spatiotemporal Changes in Temperature and Precipitation in West Africa. Part I: Analysis with the CMIP6 Historical Dataset

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3506
Author(s):  
Gandomè Mayeul Leger Davy Quenum ◽  
Francis Nkrumah ◽  
Nana Ama Browne Klutse ◽  
Mouhamadou Bamba Sylla

Climate variability and change constitute major challenges for Africa, especially West Africa (WA), where an important increase in extreme climate events has been noticed. Therefore, it appears essential to analyze characteristics and trends of some key climatological parameters. Thus, this study addressed spatiotemporal variabilities and trends in regard to temperature and precipitation extremes by using 21 models of the Coupled Model Intercomparison Project version 6 (CMIP6) and 24 extreme indices from the Expert Team on Climate Change Detection and Indices (ETCCDI). First, the CMIP6 variables were evaluated with observations (CHIRPS, CHIRTS, and CRU) of the period 1983–2014; then, the extreme indices from 1950 to 2014 were computed. The innovative trend analysis (ITA), Sen’s slope, and Mann–Kendall tests were utilized to track down trends in the computed extreme climate indices. Increasing trends were observed for the maxima of daily maximum temperature (TXX) and daily minimum temperature (TXN) as well as the maximum and minimum of the minimum temperature (TNX and TNN). This upward trend of daily maximum temperature (Tmax) and daily minimum temperature (Tmin) was enhanced with a significant increase in warm days/nights (TX90p/TN90p) and a significantly decreasing trend in cool days/nights (TX10p/TN10p). The precipitation was widely variable over WA, with more than 85% of the total annual water in the study domain collected during the monsoon period. An upward trend in consecutive dry days (CDD) and a downward trend in consecutive wet days (CWD) influenced the annual total precipitation on wet days (PRCPTOT). The results also depicted an upward trend in SDII and R30mm, which, additionally to the trends of CDD and CWD, could be responsible for localized flood-like situations along the coastal areas. The study identified the 1970s dryness as well as the slight recovery of the 1990s, which it indicated occurred in 1992 over West Africa.

2011 ◽  
Vol 50 (8) ◽  
pp. 1654-1665 ◽  
Author(s):  
Ron F. Hopkinson ◽  
Daniel W. McKenney ◽  
Ewa J. Milewska ◽  
Michael F. Hutchinson ◽  
Pia Papadopol ◽  
...  

AbstractOn 1 July 1961, the climatological day was redefined to end at 0600 UTC at all principal climate stations in Canada. Prior to that, the climatological day at principal stations ended at 1200 UTC for maximum temperature and precipitation and 0000 UTC for minimum temperature and was similar to the climatological day at ordinary stations. Hutchinson et al. reported occasional larger-than-expected residuals at 50 withheld stations when the Australian National University Spline (ANUSPLIN) interpolation scheme was applied to daily data for 1961–2003, and it was suggested that these larger residuals were in part due to the existence of different climatological days. In this study, daily minimum and maximum temperatures at principal stations were estimated using hourly temperatures for the same climatological day as local ordinary climate stations for the period 1953–2007. Daily precipitation was estimated at principal stations using synoptic precipitation data for the climatological day ending at 1200 UTC, which, for much of the country, was close to the time of the morning observation at ordinary climate stations. At withheld principal stations, the climatological-day adjustments led to the virtual elimination of large residuals in maximum and minimum temperature and a marked reduction in precipitation residuals. Across all 50 withheld stations the climatological day adjustments led to significant reductions, by around 12% for daily maximum temperature, 15% for daily minimum temperature, and 22% for precipitation, in the residuals reported by Hutchinson et al.


2014 ◽  
Vol 53 (9) ◽  
pp. 2148-2162 ◽  
Author(s):  
Bárbara Tencer ◽  
Andrew Weaver ◽  
Francis Zwiers

AbstractThe occurrence of individual extremes such as temperature and precipitation extremes can have a great impact on the environment. Agriculture, energy demands, and human health, among other activities, can be affected by extremely high or low temperatures and by extremely dry or wet conditions. The simultaneous or proximate occurrence of both types of extremes could lead to even more profound consequences, however. For example, a dry period can have more negative consequences on agriculture if it is concomitant with or followed by a period of extremely high temperatures. This study analyzes the joint occurrence of very wet conditions and high/low temperature events at stations in Canada. More than one-half of the stations showed a significant positive relationship at the daily time scale between warm nights (daily minimum temperature greater than the 90th percentile) or warm days (daily maximum temperature above the 90th percentile) and heavy-precipitation events (daily precipitation exceeding the 75th percentile), with the greater frequencies found for the east and southwest coasts during autumn and winter. Cold days (daily maximum temperature below the 10th percentile) occur together with intense precipitation more frequently during spring and summer. Simulations by regional climate models show good agreement with observations in the seasonal and spatial variability of the joint distribution, especially when an ensemble of simulations was used.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1171
Author(s):  
Junju Zhou ◽  
Jumei Huang ◽  
Xi Zhao ◽  
Li Lei ◽  
Wei Shi ◽  
...  

The increase in the frequency and intensity of extreme weather events around the world has led to the frequent occurrence of global disasters, which have had serious impacts on the society, economic and ecological environment, especially fragile arid areas. Based on the daily maximum temperature and daily minimum temperature data of four meteorological stations in Shiyang River Basin (SRB) from 1960 to 2015, the spatio-temporal variation characteristics of extreme temperature indices were analyzed by means of univariate linear regression analysis, Mann–Kendall test and correlation analysis. The results showed that the extreme temperatures warming indices and the minimum of daily maximum temperature (TXn) and the minimum of daily minimum temperature (TNn) of cold indices showed an increasing trend from 1960 to 2016, especially since the 1990s, where the growth rate was fast and the response to global warming was sensitive. Except TXn and TNn, other cold indices showed a decreasing trend, especially Diurnal temperature (DTR) range, which decreased rapidly, indicating that the increasing speed of daily min-temperature were greater than of daily max-temperature in SRB. In space, the change tendency rate of the warm index basically showed an obvious altitude gradient effect that decreased with the altitude, which was consistent with Frost day (FD0) and Cool nights (TN10p) in the cold index, while Ice days (ID0) and Cool days (TX10p) are opposite. The mutation of the cold indices occurred earlier than the warm indices, illustrating that the cold indices in SRB were more sensitive to global warming. The change in extreme temperatures that would have a significant impact on the vegetation and glacier permafrost in the basin was the result of the combined function of different atmospheric circulation systems, which included the Arctic polar vortex, Western Pacific subtropical high and Qinghai-tibet Plateau circulation.


2021 ◽  
Author(s):  
Raju Kalita ◽  
Dipangkar Kalita ◽  
Atul Saxena

Abstract We have used Mann-Kendall trend test and Sen’s slope estimator method to find out significant changes in extreme climate indices for daily temperature as well as precipitation over the period 1979 to 2020 in Cherrapunji. In the present study, a total of 24 precipitation and temperature based extreme climate indices were calculated using RClimDex v 1.9-3. Among 24 indices, 7 were derived from number of days above nn mm rainfall (Rnn) according to Indian Meteorological Department (IMD) convention and the rest were in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). It was observed that, among all the indices, consecutive dry days (CDD), summer days (SU25) and very light rainfall (VLR) days increased significantly with 0.54, 1.58 and 0.14 days/year respectively, while only consecutive wet days (CWD) decreased significantly with 0.36 days/year. A slight negative trend was also observed in case of tropical nights (TR20) and among the other precipitation indices as well. Again, the indices associated with daily maximum temperature increased significantly with annual change of 0.06 to 0.07 ⁰C/year. And for indices associated with daily minimum temperature, almost no change or a slight negative change was observed, except a significant positive trend in February and significant negative trend in November for TNN only. The analysis reveals that some of the extreme climate indices which explains the climatic conditions of Cherrapunji has changed a lot over the period of 42 years and if this trend continues then Cherrapunji will be under threat when it comes to climate change.


2020 ◽  
Author(s):  
Ricardo A. Scrosati ◽  
Julius A. Ellrich ◽  
Matthew J. Freeman

Abstract. Intertidal habitats are unique because they spend alternating periods of submergence (at high tide) and emergence (at low tide) every day. Thus, intertidal temperature is mainly driven by sea surface temperature (SST) during high tides and by air temperature during low tides. Because of that, the switch from high to low tides and viceversa can determine rapid changes in intertidal thermal conditions. On cold-temperate shores, which are characterized by cold winters and warm summers, intertidal thermal conditions can also change considerably with seasons. Despite this uniqueness, knowledge on intertidal temperature dynamics is more limited than for open seas. This is especially true for wave-exposed intertidal habitats, which, in addition to the unique properties described above, are also characterized by wave splash being able to moderate intertidal thermal extremes during low tides. To address this knowledge gap, we measured temperature every half hour during a period of 5.5 years (2014–2019) at nine wave-exposed rocky intertidal locations along the Atlantic coast of Nova Scotia, Canada. This data set is freely available from the figshare online repository (Scrosati and Ellrich, 2020a; https://doi.org/10.6084/m9.figshare.12462065.v1). We summarize the main properties of this data set by focusing on location-wise values of daily maximum and minimum temperature and daily SST, which we make freely available as a separate data set in figshare (Scrosati et al., 2020; https://doi.org/10.6084/m9.figshare.12453374.v1). Overall, this cold-temperate coast exhibited a wide annual SST range, from a lowest overall value of −1.8 °C in winter to a highest overall value of 22.8 °C in summer. In addition, the latitudinal SST trend along this coast experienced a reversal from winter, when SST increased southwards, to summer, when SST decreased southwards, seemingly driven by alongshore differences in coastal upwelling. Daily temperature maxima and minima were more extreme, as expected from their occurrence during low tides, ranging from a lowest overall value of −16.3 °C in winter to a highest overall value of 41.2 °C in summer. Daily maximum temperature in summer varied little along the coast, while daily minimum temperature in winter increased southwards. This data set is the first of its kind for the Atlantic Canadian coast and exemplifies in detail how intertidal temperature varies in wave-exposed environments on a cold-temperate coast.


2020 ◽  
Vol 12 (4) ◽  
pp. 2695-2703
Author(s):  
Ricardo A. Scrosati ◽  
Julius A. Ellrich ◽  
Matthew J. Freeman

Abstract. Intertidal habitats are unique because they spend alternating periods of submergence (at high tide) and emergence (at low tide) every day. Thus, intertidal temperature is mainly driven by sea surface temperature (SST) during high tides and by air temperature during low tides. Because of that, the switch from high to low tides and vice versa can determine rapid changes in intertidal thermal conditions. On cold-temperate shores, which are characterized by cold winters and warm summers, intertidal thermal conditions can also change considerably with seasons. Despite this uniqueness, knowledge on intertidal temperature dynamics is more limited than for open seas. This is especially true for wave-exposed intertidal habitats, which, in addition to the unique properties described above, are also characterized by wave splash being able to moderate intertidal thermal extremes during low tides. To address this knowledge gap, we measured temperature every half hour during a period of 5.5 years (2014–2019) at nine wave-exposed rocky intertidal locations spanning 415 km of the Atlantic coast of Nova Scotia, Canada. This data set is freely available from the figshare online repository (Scrosati and Ellrich, 2020a; https://doi.org/10.6084/m9.figshare.12462065.v1). We summarize the main properties of this data set by focusing on location-wise values of daily maximum and minimum temperature and daily SST, which we make freely available as a separate data set in figshare (Scrosati et al., 2020; https://doi.org/10.6084/m9.figshare.12453374.v1). Overall, this cold-temperate coast exhibited a wide annual SST range, from a lowest overall value of −1.8 ∘C in winter to a highest overall value of 22.8 ∘C in summer. In addition, the latitudinal SST trend along this coast experienced a reversal from winter (when SST increased southwards) to summer (when SST decreased southwards), seemingly driven by alongshore differences in summer coastal upwelling. Daily temperature maxima and minima were more extreme, as expected from their occurrence during low tides, ranging from a lowest overall value of −16.3 ∘C in winter to a highest overall value of 41.2 ∘C in summer. Daily maximum temperature in summer varied little along the coast, while daily minimum temperature in winter increased southwards. This data set is the first of its kind for the Atlantic Canadian coast and exemplifies in detail how intertidal temperature varies in wave-exposed environments on a cold-temperate coast.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 489
Author(s):  
Jinxiu Liu ◽  
Weihao Shen ◽  
Yaqian He

India has experienced extensive land cover and land use change (LCLUC). However, there is still limited empirical research regarding the impact of LCLUC on climate extremes in India. Here, we applied statistical methods to assess how cropland expansion has influenced temperature extremes in India from 1982 to 2015 using a new land cover and land use dataset and ECMWF Reanalysis V5 (ERA5) climate data. Our results show that during the last 34 years, croplands in western India increased by ~33.7 percentage points. This cropland expansion shows a significantly negative impact on the maxima of daily maximum temperature (TXx), while its impacts on the maxima of daily minimum temperature and the minima of daily maximum and minimum temperature are limited. It is estimated that if cropland expansion had not taken place in western India over the 1982 to 2015 period, TXx would likely have increased by 0.74 (±0.64) °C. The negative impact of croplands on reducing the TXx extreme is likely due to evaporative cooling from intensified evapotranspiration associated with croplands, resulting in increased latent heat flux and decreased sensible heat flux. This study underscores the important influences of cropland expansion on temperature extremes and can be applicable to other geographic regions experiencing LCLUC.


2005 ◽  
Vol 18 (23) ◽  
pp. 5011-5023 ◽  
Author(s):  
L. A. Vincent ◽  
T. C. Peterson ◽  
V. R. Barros ◽  
M. B. Marino ◽  
M. Rusticucci ◽  
...  

Abstract A workshop on enhancing climate change indices in South America was held in Maceió, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be located closer to the west and east coasts of South America.


2021 ◽  
Author(s):  
Mastawesha Misganaw Engdaw ◽  
Andrew Ballinger ◽  
Gabriele Hegerl ◽  
Andrea Steiner

<p>In this study, we aim at quantifying the contribution of different forcings to changes in temperature extremes over 1981–2020 using CMIP6 climate model simulations. We first assess the changes in extreme hot and cold temperatures defined as days below 10% and above 90% of daily minimum temperature (TN10 and TN90) and daily maximum temperature (TX10 and TX90). We compute the change in percentage of extreme days per season for October-March (ONDJFM) and April-September (AMJJAS). Spatial and temporal trends are quantified using multi-model mean of all-forcings simulations. The same indices will be computed from aerosols-, greenhouse gases- and natural-only forcing simulations. The trends estimated from all-forcings simulations are then attributed to different forcings (aerosols-, greenhouse gases-, and natural-only) by considering uncertainties not only in amplitude but also in response patterns of climate models. The new statistical approach to climate change detection and attribution method by Ribes et al. (2017) is used to quantify the contribution of human-induced climate change. Preliminary results of the attribution analysis show that anthropogenic climate change has the largest contribution to the changes in temperature extremes in different regions of the world.</p><p><strong>Keywords:</strong> climate change, temperature, extreme events, attribution, CMIP6</p><p> </p><p><strong>Acknowledgement:</strong> This work was funded by the Austrian Science Fund (FWF) under Research Grant W1256 (Doctoral Programme Climate Change: Uncertainties, Thresholds and Coping Strategies)</p>


2013 ◽  
Vol 52 (10) ◽  
pp. 2363-2372 ◽  
Author(s):  
John R. Christy

AbstractThe International Surface Temperature Initiative is a worldwide effort to locate weather observations, digitize them for public access, and attach provenance to them. As part of that effort, this study sought documents of temperature observations for the nation of Uganda. Although scattered reports were found for the 1890s, consistent record keeping appears to have begun in 1900. Data were keyed in from images of several types of old forms as well as accessed electronically from several sources to extend the time series of 32 stations with at least 4 yr of data back as far as data were available. Important gaps still remain; 1979–93 has virtually no observations from any station. Because many stations were represented by more than one data source, a scheme is described to extract the “best guess” values for each station of monthly averages of the daily maximum, minimum, and mean temperature. A preliminary examination of the national time series indicates that, since the early twentieth century, it appears that Uganda experienced essentially no change in monthly-average daily maximum temperature but did experience a considerable rise in monthly-average daily minimum temperature, concentrated in the last three decades. Because there are many gaps in the data, it is hoped that readers with information on extant data that were not discovered for this study will contact the author or the project so that the data may be archived.


Sign in / Sign up

Export Citation Format

Share Document