scholarly journals Roadmapping the Transition to Water Resource Recovery Facilities: The Two Demonstration Case Studies of Corleone and Marineo (Italy)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 156
Author(s):  
Giorgio Mannina ◽  
Luigi Badalucco ◽  
Lorenzo Barbara ◽  
Alida Cosenza ◽  
Daniele Di Trapani ◽  
...  

The current exploitation of freshwater, as well as the significant increase in sewage sludge production from wastewater treatment plants (WWTPs), represent nowadays a critical issue for the implementation of sustainable development consistent with the circular economy concept. There is an urgent need to rethink the concept of WWTPs from the conventional approach consisting in pollutant removal plants to water resource recovery facilities (WRRFs). The aim of this paper is to provide an overview of the demonstration case studies at the Marineo and Corleone WRRFs in Sicily (IT), with the final aim showing the effectiveness of the resources recovery systems, as well as the importance of plant optimization to reduce greenhouse gas (GHG) emissions from WRRFs. This study is part of the H2020 European Project “Achieving wider uptake of water-smart solutions—Wider-Uptake”, which final aim is to demonstrate the water-smart solution feasibility in the wastewater sector. The main project goal is to overcome the existing barriers that hamper the transition to circularity through the implementation of a governance analysis tool. The preliminary actions in the two demonstration cases are first presented, while, subsequently, the water-smart solutions to be implemented are thoroughly described, highlighting their roles in the transition process. The achieved preliminary results underlined the significant potential of WRRF application, a great chance to demonstrate the feasibility of innovative solutions in the wastewater sector to overcome the existing social, administrative and technical barriers.

2016 ◽  
Vol 75 (3) ◽  
pp. 518-529 ◽  
Author(s):  
T. Fernández-Arévalo ◽  
I. Lizarralde ◽  
M. Maiza ◽  
S. Beltrán ◽  
P. Grau ◽  
...  

Given the shift in perception of wastewater treatment plants as water resource recovery facilities, conventional mathematical models need to be updated. The resource recovery perspective should be applied to new processes, technologies and plant layouts. The number and level of models proposed to date give an overview of the complexity of the new plant configurations and provides a wide range of possibilities and process combinations in order to construct plant layouts. This diversity makes the development of standard, modular and flexible tools and model libraries that allow the incorporation of new processes and components in a straightforward way a necessity. In this regard, the plant-wide modelling (PWM) library is a complete model library that includes conventional and advanced technologies and that allows economic and energetic analyses to be carried out in a holistic way. This paper shows the fundamentals of this PWM library that is built upon the above-mentioned premises and the application of the PWM library in three different full-scale case studies.


2019 ◽  
Vol 79 (9) ◽  
pp. 1808-1820 ◽  
Author(s):  
Kimberly Solon ◽  
Mingsheng Jia ◽  
Eveline I. P. Volcke

Abstract There are numerous successful studies on optimizing the performance of conventional activated sludge (CAS)-based wastewater treatment plants. However, recent studies have shown that a more significant improvement of the plant performance is achievable through integration of established technologies in novel process schemes. High-rate activated sludge system, chemically enhanced primary treatment, partial nitritation-anammox, partial nitrification-denitrification over nitrite and anaerobic digestion are integrated in two process schemes to determine to which extent energy savings and energy production can be achieved with these new process layouts compared to a CAS-based process scheme. The results presented in this paper show that there is potential for achieving future energy-positive water resource recovery facilities through novel integration of mature technologies for municipal wastewater treatment.


2018 ◽  
Vol 2018 (18) ◽  
pp. 98-105
Author(s):  
Ahmed Shawki Ahmed ◽  
Gholamreza Bahreini ◽  
Dang Ho ◽  
Coos Wessels ◽  
Pim Marcelis ◽  
...  

2018 ◽  
Vol 2018 (4) ◽  
pp. 353-365
Author(s):  
David Parry ◽  
Cameron Clark ◽  
Corey Kliebert ◽  
Paul Steele

2018 ◽  
Vol 2018 (10) ◽  
pp. 4025-4028
Author(s):  
Jose Porro ◽  
Chaïm De Mulder ◽  
Youri Amerlinck ◽  
Elena Torfs ◽  
Sophie Balemans ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1889 ◽  
Author(s):  
Agnieszka Micek ◽  
Krzysztof Jóźwiakowski ◽  
Michał Marzec ◽  
Agnieszka Listosz ◽  
Tadeusz Grabowski

The results of research on the efficiency and technological reliability of domestic wastewater purification in two household wastewater treatment plants (WWTPs) with activated sludge are presented in this paper. The studied facilities were located in the territory of the Roztocze National Park (Poland). The mean wastewater flow rate in the WWTPs was 1.0 and 1.6 m3/day. In 2017–2019, 20 series of analyses were done, and 40 wastewater samples were taken. On the basis of the received results, the efficiency of basic pollutant removal was determined. The technological reliability of the tested facilities was specified using the Weibull method. The average removal efficiencies for the biochemical oxygen demand in 5 days (BOD5) and chemical oxygen demand (COD) were 66–83% and 62–65%, respectively. Much lower effects were obtained for total suspended solids (TSS) and amounted to 17–48%, while the efficiency of total phosphorus (TP) and total nitrogen (TN) removal did not exceed 34%. The analyzed systems were characterized by the reliability of TSS, BOD5, and COD removal at the level of 76–96%. However, the reliability of TN and TP elimination was less than 5%. Thus, in the case of biogenic compounds, the analyzed systems did not guarantee that the quality of treated wastewater would meet the requirements of the Polish law during any period of operation. This disqualifies the discussed technological solution in terms of its wide application in protected areas and near lakes, where the requirements for nitrogen and phosphorus removal are high.


2016 ◽  
Vol 23 (1) ◽  
pp. 137-149 ◽  
Author(s):  
Chang-Yong YI ◽  
Han-Seong GWAK ◽  
Dong-Eun LEE

Low carbon construction is an important operation management goal because greenhouse gas (GHG) reduc­tion has become a global concern. Major construction resources that contribute GHG, such as equipment and labour, are being targeted to achieve this goal. The GHG emissions produced by the resources vary with their operating conditions. It is commendable to provide a statistical GHG emission estimation method that models the transitory nature of resource states at micro-scale of construction operations. This paper proposes a computational method called Stochastic Carbon Emission Estimation (SCE2) that measures the variability of GHG emissions. It creates construction operation models consisting of atomic work tasks, utilizes hourly equipment fuel consumption and hourly labourer respiratory rates that change according to their operating conditions classified into five categories, and identifies an optimal resource combi­nation by trading off eco-economic performance metrics such as the amount of GHG emissions, operation completion time, operation completion cost, and productivity. The study is of value to researchers because SCE2 fill in a gap to eco-economic operation modelling and analysis tool which considers operating conditions at micro-scale of construction operation having many stochastic work tasks. This study is also relevance to practitioners because it allows project man­agers to achieve eco-economic goals while honouring predefined constraints associated with time and cost.


2021 ◽  
pp. 117554
Author(s):  
Maria Faragò ◽  
Anders Damgaard ◽  
Jeanette Agertved Madsen ◽  
Jacob Kragh Andersen ◽  
Dines Thornberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document