scholarly journals Nutrient Leaching When Soil Is Part of Plant Growth Media

Water ◽  
2017 ◽  
Vol 9 (7) ◽  
pp. 501 ◽  
Author(s):  
Sally Logsdon
2016 ◽  
Vol 24 (4) ◽  
pp. 238-245 ◽  
Author(s):  
S. D. Logsdon ◽  
P. A. Sauer

2018 ◽  
Vol 1 (2) ◽  
pp. 42-52
Author(s):  
Alina Stingu ◽  
Corneliu Tanase ◽  
Valentin I. Popa

Abstract The aim of this study is to evaluate the possibility of using hemp shives as natural amendments in a phytoremediation sequence. Thus, plant growth tests were conducted for rapeseed (Brassica napus) and flax (Linum usitatissimum) in vegetation pots with sandy soil. These were seeded in a cadmium artificial contaminated environment with or without hemp shives. The efficiency of hemp shives as natural amendments was evaluated after 40 days of initiating experimental model, by evaluation of plant growth and development of plants through biometric and gravimetric measurements. Also, the concentration of assimilatory pigments was determined. In order to establish bioaccumulation capacity, degree of recovery and translocation factor, it was determined the concentration of cadmium metal ions absorbed in various parts of rapeseed and flax plants. It has been found that the development of the root system is more pronounced in the presence of hemp shives both in contamination with cadmium ions and in the absence. By determining cadmium concentrations accumulate in various parts of the plant have been shown that supplementing growth media with hemp shives, improves the bioaccumulation process of cadmium ions. According to the results, the hemp shives can be used as amendments in phytoremediation process, enhancing bioaccumulation process.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e107689 ◽  
Author(s):  
Norman B. Best ◽  
Thomas Hartwig ◽  
Joshua S. Budka ◽  
Brandon J. Bishop ◽  
Elliot Brown ◽  
...  

2016 ◽  
Vol 46 (6) ◽  
pp. 991-995 ◽  
Author(s):  
Mara Márcia Sampaio Albuquerque ◽  
Alone Lima Brito ◽  
Andressa Priscila Piancó Santos Lima ◽  
Bruno Freitas Matos Alvim ◽  
José Raniere Ferreira de Santana

ABSTRACT: The goal of the present study was to evaluate the germination, initial growth, and in vitro co-cultivation of Comanthera curralensis Moldenke, a "sempre viva" native of the Chapada Diamantina state of Bahia. Full strength (MS) and half-strength MS (MS1/2) growth media supplemented with two different sucrose concentrations (15 and 30g L-1) were tested for germination and initial plant growth. Three different plant densities were tested by in vitro culture (8, 10 and 12 plants per container). MS1/2 medium with 15g L-1 sucrose resulted in a higher percentage of germination and plant growth for the in vitro establishment of C. curralensis. The use of 12 plants per container is indicated for cost reduction in C. curralensis in vitro production.


2020 ◽  
Vol 71 (5) ◽  
pp. 1706-1722 ◽  
Author(s):  
Marieke Dubois ◽  
Dirk Inzé

Abstract Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.


2018 ◽  
Vol 135 ◽  
pp. 184-188 ◽  
Author(s):  
Jacey L. Payne ◽  
Nayan N. Bhakta ◽  
Sarah Lyons ◽  
Ruba A.M. Mohamed ◽  
Kenneth C. Carroll ◽  
...  

1999 ◽  
Vol 50 (2) ◽  
pp. 217 ◽  
Author(s):  
D. O. Huett ◽  
S. C. Morris

Nutrient leaching loss, plant growth, and nutrient uptake of 4-week (transplanting to sale) ground-cover species were investigated under a range of leaching conditions and with different sources of a controlled- release fertiliser (CRF), Osmocote NPK (3–4 month) (Osm). Osm was applied pre-planting at a rate equivalent to 800 g N/m3 to pots containing sand, and composted pinebark and hardwood sawdust medium that had received nutrient amendment during formulation. Two experiments were conducted in a glasshouse over summer–autumn where irrigation treatments produced defined leachate volumes. In Expt 1, leachate volumes of <5, 50, and 200 mL every 2 days each received an additional single heavy leaching event of 400 mL after 1, 2, or 3 weeks. In Expt 2, the 3 leachate volumes were each fertilised with new Osm (a newly purchased Osm) or old Osm (a 2-year-old source), where both of these sources contained 0.5–1.5% visibly damaged prills; and damaged Osm, where damaged prills were used exclusively. In both experiments, increasing leachate volume increased (P < 0.001) leaching of N (nitrate + ammonium), P, K, Ca, and Mg. In Expt 1, leaching was highest (P < 0.01) when the heavy leaching event occurred after 2 or 3 weeks for N and after 2 weeks for P. When damaged Osm was used, N, P, and K loss was 3–15 times higher (P < 0.001) than from new and old Osm (98.5–99.5% undamaged). The highest leaching loss of N, P, K, Ca, and Mg occurred in the first week after potting up, with damaged prills at highest leaching volume. Increasing leachate volume (in the presence of a heavy leaching event) reduced (P < 0.001) electrical conductivity (EC) of potting medium after 4 weeks from 1.02 to 0.54 dS/m. Damaged prills reduced (P < 0.001) EC at the high leachate volume in relation to new Osm (2.38 v. 0.29 dS/m). Treatments that increased (P < 0.05) nutrient leaching generally reduced (P < 0.05) nutrient concentrations in shoots and depressed the growth of some plant species. Shoot growth of 2 of 5 species was reduced (P < 0.001) at the highest leachate volume with an additional heavy leaching event in Week 1 or 2, and root growth of all but the slowest growing species declined with increasing leachate volume. Damaged prills reduced (P < 0.001) shoot growth of 2 of the 5 ground-cover species. This study demonstrated that excessive leaching and the use of damaged prills for containerised nursery plants fertilised with CRF results in high nutrient loss, low residual nutrient content, reduced nutrient uptake in shoots, and reduced shoot growth of some species.


Plant Disease ◽  
2017 ◽  
Vol 101 (9) ◽  
pp. 1568-1577 ◽  
Author(s):  
Manuel Avilés ◽  
Celia Borrero

The aims of this study were to assess the potential suppressive effects of different olive mill composts on Verticillium wilt and to elucidate the suppressive mechanisms. To this end, four olive mill composts from different crop areas with two maturation levels were selected. After conducting the Verticillium wilt bioassays in cotton, the suppressive effect was observed in only one compost. Compost maturation level did not affect disease development. The standardized area under the disease progress curve and microsclerotia concentration were associated with low API-ZYM enzymatic diversity, β-glucosidase activity, pH, and high electrical conductivity (EC). To assess the nature of suppressiveness in the suppressive compost, additional bioassays were performed with three treated compost-amended growing media (N-supplemented, autoclaved, and heat treated at 60°C for 6 days). Suppressiveness was partially reduced with heat treatments, where N-acetyl-β-glucosaminidase activity disappeared. In this compost, high oligotrophic actinomycete populations were associated with disease reduction. Therefore, plant growth media amended with different olive mill composts do not always show suppressiveness against Verticillium wilt. Enzymatic diversity, β-glucosidase activity, pH, and EC may be sufficient to predict where olive mill compost plant growth media will be effective in reducing Verticillium wilt and microsclerotia concentration. General and specific suppressiveness are involved in the mechanism of compost suppression.


2007 ◽  
Vol 15 (3) ◽  
pp. 159-166 ◽  
Author(s):  
P. Roberts ◽  
C.A. Edwards ◽  
G. Edwards-Jones ◽  
D.L. Jones

Sign in / Sign up

Export Citation Format

Share Document