Fertiliser use efficiency by containerised nursery plants. 3. Effect of heavy leaching and damaged fertiliser prills on plant growth, nutrient uptake, and nutrient loss

1999 ◽  
Vol 50 (2) ◽  
pp. 217 ◽  
Author(s):  
D. O. Huett ◽  
S. C. Morris

Nutrient leaching loss, plant growth, and nutrient uptake of 4-week (transplanting to sale) ground-cover species were investigated under a range of leaching conditions and with different sources of a controlled- release fertiliser (CRF), Osmocote NPK (3–4 month) (Osm). Osm was applied pre-planting at a rate equivalent to 800 g N/m3 to pots containing sand, and composted pinebark and hardwood sawdust medium that had received nutrient amendment during formulation. Two experiments were conducted in a glasshouse over summer–autumn where irrigation treatments produced defined leachate volumes. In Expt 1, leachate volumes of <5, 50, and 200 mL every 2 days each received an additional single heavy leaching event of 400 mL after 1, 2, or 3 weeks. In Expt 2, the 3 leachate volumes were each fertilised with new Osm (a newly purchased Osm) or old Osm (a 2-year-old source), where both of these sources contained 0.5–1.5% visibly damaged prills; and damaged Osm, where damaged prills were used exclusively. In both experiments, increasing leachate volume increased (P < 0.001) leaching of N (nitrate + ammonium), P, K, Ca, and Mg. In Expt 1, leaching was highest (P < 0.01) when the heavy leaching event occurred after 2 or 3 weeks for N and after 2 weeks for P. When damaged Osm was used, N, P, and K loss was 3–15 times higher (P < 0.001) than from new and old Osm (98.5–99.5% undamaged). The highest leaching loss of N, P, K, Ca, and Mg occurred in the first week after potting up, with damaged prills at highest leaching volume. Increasing leachate volume (in the presence of a heavy leaching event) reduced (P < 0.001) electrical conductivity (EC) of potting medium after 4 weeks from 1.02 to 0.54 dS/m. Damaged prills reduced (P < 0.001) EC at the high leachate volume in relation to new Osm (2.38 v. 0.29 dS/m). Treatments that increased (P < 0.05) nutrient leaching generally reduced (P < 0.05) nutrient concentrations in shoots and depressed the growth of some plant species. Shoot growth of 2 of 5 species was reduced (P < 0.001) at the highest leachate volume with an additional heavy leaching event in Week 1 or 2, and root growth of all but the slowest growing species declined with increasing leachate volume. Damaged prills reduced (P < 0.001) shoot growth of 2 of the 5 ground-cover species. This study demonstrated that excessive leaching and the use of damaged prills for containerised nursery plants fertilised with CRF results in high nutrient loss, low residual nutrient content, reduced nutrient uptake in shoots, and reduced shoot growth of some species.

Soil Research ◽  
1994 ◽  
Vol 32 (6) ◽  
pp. 1275 ◽  
Author(s):  
RK Misra

Errors in nutrient analyses of roots may arise from soil adhering to roots, the method of root separation from soil and storage of root samples. Experiments were conducted on fine roots of Eucalyptus nitens from a clay soil to establish a method for estimating true concentrations of nitrogen (N), phosphorus (P) and potassium (K) in root samples (i.e. unbiased by the soil adhering to roots), and to test the adequacy of measurements of ash residues of root samples for estimating the quantity of soil adhering to roots. Results indicated that nutrient concentrations on the basis of ash-free weight of root samples approached true nutrient concentrations of roots when the quality of soil adhering to roots was small, and the nutrient concentration of soil was much lower than the roots. Estimates of true nutrient concentrations of roots calculated from the information on the weight of soil adhering to roots and the nutrient concentration of the soil were satisfactory in the prediction of nutrient content of roots for a range of soil-contamination. The factor which accounted for contamination, and helped estimation of true concentrations from measured concentrations, depended on the magnitude of soil contamination and the relative concentrations of nutrients in roots and soil. Wet separation (washing) of roots from soil compared with dry separation resulted in 24% loss of K. With various methods of storage of washed root samples, the level of soil contamination was 5-20% of the root sample. Submergence of roots in water for 15 days after washing reduced the concentration of N, P and K in roots to 84, 50 and 54% of those roots which were dried immediately following washing. The rate of nutrient loss from roots was greater for K than for N and P when washed samples were stored submerged. On the basis of this study, it is recommended that roots, after separation from soil, should be dried as soon as possible with a minimum exposure of roots to wet conditions. Estimates of soil adhering to roots, and nutrient concentration of the adhering soil, are required to infer correct concentrations of nutrients in root samples.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1987
Author(s):  
Tongyin Li ◽  
Guihong Bi ◽  
Xiaojie Zhao ◽  
Richard L. Harkess ◽  
Carolyn Scagel

Mineral nutrient uptake of Hydrangea macrophylla ‘Merritt’s Supreme’ affected by nitrogen (N) fertilization rate, container type, and irrigation frequency was investigated. Rooted liners of hydrangea plants were fertilized twice weekly with a N-free fertilizer plus five N rates including 0, 5, 10, 15, or 20 mM N from ammonium nitrate (NH4NO3), irrigated once or twice daily with the same total irrigation volume, and grown in two types of one-gallon containers: a black plastic container and a biodegradable container (biocontainer), made from recycled paper. Concentrations of calcium (Ca) and magnesium (Mg) averaged in the entire plant, and iron (Fe) and manganese (Mn) in roots had increasing trends with increasing N rate. By comparison, increasing N rate had a dilution effect on root phosphorus (P), stem and root potassium (K), stem Ca and Mg, and leaf boron (B) concentrations. In general, nutrient content of each tested element increased with increasing N rate in each structure, or total in the plant. When there was a significant container type effect, plastic containers consistently had increased nutrient concentrations and content compared to biocontainers. One irrigation per day was beneficial in increasing nutrient concentrations of P, Ca, and zinc (Zn) in different plant structures.


HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1470-1477 ◽  
Author(s):  
Martin Makgose Maboko ◽  
Isa Bertling ◽  
Christian Phillipus Du Plooy

Mycorrhizal inoculation improves nutrient uptake in a range of host plants. Insufficient nutrient uptake by plants grown hydroponically is of major environmental and economic concern. Tomato seedlings, therefore, were treated with a mycorrhizal inoculant (Mycoroot™) at transplanting to potentially enhance nutrient uptake by the plant. Then seedlings were transferred to either a temperature-controlled (TC) or a non-temperature-controlled (NTC) tunnel and maintained using the recommended (100%) or a reduced (75% and 50%) nutrient concentration. Plants grown in the NTC tunnel had significantly poorer plant growth, lower fruit mineral concentration, and lower yield compared with fruit from plants in the TC tunnel. Leaves from plants in the NTC tunnel had higher microelement concentrations than those in the TC tunnel. Highest yields were obtained from plants fertigated with 75% of the recommended nutrient concentration, and not from the 100% nutrient concentration. Application of arbuscular mycorrhizal fungi (AMF) neither enhanced plant growth, nor yield, nor fruit mineral nutrient concentrations. However, temperature control positively affected the fruit Mn and Zn concentration in the TC tunnel following AMF application.


HortScience ◽  
2009 ◽  
Vol 44 (6) ◽  
pp. 1573-1580 ◽  
Author(s):  
Aaron L. Warsaw ◽  
R. Thomas Fernandez ◽  
Bert M. Cregg ◽  
Jeffrey A. Andresen

Container-grown woody ornamentals were irrigated according to a percentage of daily water use (DWU) or a traditional irrigation rate to evaluate plant growth, irrigation volume, runoff, and nutrient loss from each irrigation treatment. Deutzia gracilis Sieb. and Zucc. ‘Duncan’, Kerria japonica (L.) DC. ‘Albiflora’, Thuja plicata D. Don. ‘Atrovirens’, and Viburnum dentatum L. ‘Ralph Senior’ were grown in 10.2-L (# 3) containers under four overhead irrigation treatments: 1) a control irrigation rate of 19 mm per application (control); 2) irrigation scheduled to replace 100% DWU per application (100DWU); 3) irrigation alternating every other application with 100% replacement of DWU and 75% DWU (100–75); and 4) irrigation scheduled on a three-application cycle with one application of 100% DWU followed by two applications replacing 75% DWU (100–75–75). Applications were separated by at least 24 h. Total irrigation applied for the 100DWU, 100–75, and 100–75–75 treatments was 33%, 41%, and 44% less, respectively, than the total water applied by the control treatment of 123 L per container. Plants grown under the three DWU treatments had a final growth index greater than or equal to plants irrigated by the control treatment depending on species. Daily average runoff volumes from production areas irrigated with 100% and 75% DWU were 66% and 79% lower than average control runoff of 11.4 L·m−2·d−1 across all collection days. Quantity of NO3–-N lost daily across all collection days for the 100% DWU and 75% DWU irrigation volumes averaged 38% and 59% less, respectively, than the control. Daily losses of PO43–- P quantities across all collection days under the 100% and 75% DWU volumes were 46% and 74% lower, respectively, compared with the control. Irrigating according to the DWU treatments used in this study reduced irrigation and runoff volumes and NO3–-N and PO43–-P losses compared with a control of 19 mm per application while producing the same size or larger plants.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1731
Author(s):  
Cathy L. Thomas ◽  
Tegan Darch ◽  
Paul Harris ◽  
Deborah A. Beaumont ◽  
Stephan M. Haefele

Pasture micro-nutrient concentrations are often deficient for herbage productivity and the health of livestock. The aim of this study was to investigate soil and herbage micro-nutrient content and the effects on yield on the three pasture systems of the North Wyke Farm Platform (NWFP): high-sugar grass + legume mix minus nitrogen (N) fertilizer (blue/HSG + L); permanent pasture plus N fertilizer (green/P + N); high-sugar grass plus N fertilizer (red/HSG + N). The locations with high soil total micro-nutrient concentrations had a greater slope and higher soil organic matter (SOM) content. Herbage micro-nutrient concentrations were often greater at the locations with high soil total micro-nutrient concentrations. The concentration and uptake of nearly all micro-nutrients was greatest in the herbage of the green/P + N system, which had the highest SOM content, whereas they were often lowest in the red/HSG + N system, which had the lowest SOM and the highest yield, indicating biomass dilution of micro-nutrients in the herbage. At the locations with high soil micro-nutrient concentrations, yield was higher than at locations with low micro-nutrient concentrations, and was equal across the three pasture systems, regardless of fertilizer N treatment. Variation in micro-nutrient uptake/yield in the blue grass–legume system was predominantly explained by the soil molybdenum (Mo) concentration, possibly relating to the requirement for Mo in biological nitrogen fixation. There was, therefore, a trade-off in ploughing and re-seeding for higher yield, with the maintenance of SOM being important for herbage micro-nutrient content.


Author(s):  
Gitika Bhardwaj ◽  
Uday Sharma ◽  
Perminder Singh Brar ◽  
Rajesh Kaushal

The present study was conducted to evaluate the growth response of Capsicum (Capsicum annuum L.) to varying levels of Phosphorus (P), Zinc (Zn) and Arbuscular Mycorrhizae (AM). A pot experiment with twenty-four treatment combinations was setup in the net house. The treatment combination consisted of 4 levels of P: P0- 0, P50 - 237.5 kg ha-1 SSP, P75 - 355.5 kg ha-1 SSP and P100- 475 kg ha-1 SSP, 3 levels of Zn: Zn50- 5 Kg ha-1 ZnSO4, Zn75-7.5 Kg ha-1 ZnSO4, Zn100- 10 Kg ha-1 ZnSO4 and 2 levels of AM: I0- 0 and I15- 15 g per pot. The main objective of the study was to reduce the antagonistic interaction between P and Zn by using AM fungi. The results of combined effects of application of P, Zn and AM revealed that P, Zn addition along with AM fungi improved plant growth parameters, plant nutrient content and total nutrient uptake (both above ground and underground portion) of the plant. The results indicated increase in plant height, root length and total nutrient uptake by increasing the level of P, Zn and Arbuscular Mycorrhizae. Also, Arbuscular Mycorrhizae enhanced plant growth by reducing Phosphorus or Zinc deficiency. Antagonistic effects of P and Zn addition on plant nutrient content and total nutrient uptake were absent due to application of AM fungi. Our results indicated that by using appropriate levels of AM fungi along with P and Zn, antagonistic interactions can be reduced for maximizing the plant nutrient content and nutrient uptake which may lead to improvement in plant growth and nutrition.


Author(s):  
Hannah Heyman ◽  
Nina Bassuk ◽  
Jean Bonhotal ◽  
Todd Walter

Poor soil health is a critical problem in many urban landscapes. Degraded soil restricts plant growth and microorganism activity, limiting the ability of urban landscapes to perform much needed ecosystem services. Incorporation of approximately 33% compost by volume into degraded soil has been proven to improve soil health and structure over time while avoiding the financial and environmental costs of importing soil mixes from elsewhere. However, additions of high volumes of compost could potentially increase the risk of nutrient loss through leaching and runoff. The objective of our study was to consider the effects of different compost amendments on soil health, plant health and susceptibility to nutrient leaching in order to identify ranges of acceptable compost characteristics that could be used for soil remediation in the urban landscape. We conducted a bioassay with Phaseolus vulgaris (Bush Bean) to measure the effect of nine composts from different feedstocks on various plant health parameters. We collected leachate prior to planting to measure nutrient loss from each treatment. We found that all compost amendments improved soil health. Nutrient-rich, manure-based composts produced the greatest plant growth, but also leached high concentrations of nitrate and phosphorus. Some treatments provided sufficient nutrients for plant growth without excess nutrient loss. We concluded, when incorporating as much as 33% compost by volume into a landscape bed, the optimal compost will generally have a C:N ratio of 10-20, P-content &lt;1.0% and a soluble salt content between 1.0 and 3.5 mmhos/cm. These recommendations should ensure optimal plant and soil health and minimize nutrient leaching.


2020 ◽  
Vol 1 (2) ◽  
pp. 86
Author(s):  
Mercy Bientri Yunindanova ◽  
Subuh Pramono ◽  
Muhammad Hamka Ibrahim

In this study, we investigated nutrient uptake, partitioning, and production of two subspecies of Brassica in response to nutrient solution concentration in floating hydroponics systems. This study used a complete randomized block design factorial with two factors. The first factor was two Brassica subspecies consisting of Brassica rapa subsp. chinensis (Pak Choi) and Brassica rapa var. parachinensis (Choy Sum). The second factor was the concentration level consisting electrical conductivity (EC) 1 mS cm-1 and EC 2 mS cm-1. The results indicated the absorption rates of nitrogen (N,) phosphorus (P), and potassium (K) in leaves, roots and stems were similar in both nutrient concentrations. In general, all combination treatments resulted more accumulation of P followed by N, also K as the smallest proportion. P was mostly accumulated at the root and leaves (19.60 to 25.90 mg g-1), while majority of N was collected in leaves ranging from 18.00 to 24.30 mg g-1. The highest K content was detected in the stem (10.70 to 14.20 mg g-1). P uptake was 1.69 to 2.47 times higher than K, while N uptake was 1.44 to 2.04 times higher than K. Both two subspecies and concentrations performed no significant effects on nutrient uptake. Although same species, the plant growth parameters of Pak Choi and Choy Sum are very different including plant height, leaves number, width and length. Both two subspecies adapted well with both concentrations. However, significant differences were recorded in the combination of subspecies and nutrient concentration on plant growth and production parameters. To achieve higher market portion, Pak Choi would be more suitable to be planted on EC 1 mS cm-1, while Choy Sum was favorable at both concentrations.


2009 ◽  
pp. 649-656
Author(s):  
J.I. Contreras ◽  
M.L. García ◽  
M.L. Segura ◽  
B.M. Plaza ◽  
S. Jiménez ◽  
...  

Author(s):  
Hannah Heyman ◽  
Nina Bassuk ◽  
Jean Bonhotal ◽  
Todd Walter

Poor soil health is a critical problem in many urban landscapes. Degraded soil restricts plant growth and microorganism activity, limiting the ability of urban landscapes to perform much needed ecosystem services. Incorporation of approximately 33% compost by volume into degraded soil has been proven to improve soil health and structure over time while avoiding the financial and environmental costs of importing soil mixes from elsewhere. However, additions of high volumes of compost could potentially increase the risk of nutrient loss through leaching and runoff. The objective of our study was to consider the effects of different compost amendments on soil health, plant health and susceptibility to nutrient leaching in order to identify ranges of acceptable compost characteristics that could be used for soil remediation in the urban landscape. A bioassay was conducted with Phaseolus vulgaris (Bush Bean) to measure the effect of nine composts from different feedstocks on various plant health parameters. Leachate was collected prior to planting to measure nutrient loss from each treatment. All compost amendments were found to improve soil health. Nutrient-rich, manure-based composts produced the greatest plant growth, but also leached high concentrations of nitrate and phosphorus. Some treatments provided sufficient nutrients for plant growth without excess nutrient loss. When incorporating as much as 33% compost by volume into a landscape bed, the optimal compost will generally have a C:N ratio of 10–20, P-content <1.0% and a soluble salt content between 1.0 and 3.5 mmhos/cm. These recommendations should ensure optimal plant and soil health and minimize nutrient leaching.


Sign in / Sign up

Export Citation Format

Share Document