scholarly journals Optimization and Operational Analysis of Electric Vehicle Operation with Fast-Charging Technologies

2022 ◽  
Vol 13 (1) ◽  
pp. 20
Author(s):  
Mohammed AL-SAADI ◽  
Manuel Mathes ◽  
Johannes Käsgen ◽  
Koffrie Robert ◽  
Matthias Mayrock ◽  
...  

This work presents three demos, which include Electric Buses (EBs) from four various brands with lengths of 12 m and 18 m and an Electric Truck (E-truck) for refuse collection. The technical operation of these EVs were analyzed to implement further operational cost optimization on the demo vehicles. The Electric Vehicles (EVs) were tested against superfast-charging solutions based on Pantograph (Type A & Type B) on the route lines (and depots) and based on Combined Charging System Type 2 (CCS2, Combo2) from various brands to validate the interoperability among several vendors and support further EV integration with more affordable solutions. The optimization includes the calculation of the EBs’ consumption at various seasons and under various operating conditions in order to use optimum battery system design, heating system, optimum EB fleet operation and size and to find the charging solutions properly. The results showed that the EB consumption increases in some cases by 64.5% in wintertime due to heating systems, and the consumption in urban areas is more than that on the route lines outside cities. In the E-truck demo, where the electric heater was replaced with a heat-pump to optimize the energy consumption, it was found that the consumption of the heat-pump is about half of the electric heater under certain operating conditions. Under strict EB schedule, Pantograph charging solutions with power ratings of 300–600 kW have been adopted to charge the batteries of the EBs within 4–10 min. In order to minimize the cumulative costs of energy, (pantograph) charging infrastructure depreciation and battery degradation, as well as depot charging (at the bus operator’s depot), was adopted with a power level of 50–350 kW based on CCS2 and pantograph.

2021 ◽  
Author(s):  
Dominik Husarek ◽  
Simon Paulus ◽  
Michael Metzger ◽  
Vjekoslav Salapic ◽  
Stefan Niessen

Since E-Mobility is on the rise worldwide, large Charging Infrastructure (CI) networks are required to satisfy the upcoming Charging Demand (CD). Understanding this CD with its spatial and temporal uncertainties is important for grid operators to quantify the grid impact of Electric Vehicle integration and for Charging Station (CS) operators to assess long-term CI investments. Hence, we introduce an Agent-based E-Mobility Model assessing regional CI systems with their multi-directional interactions between CSs and vehicles. A Global Sensitivity Analysis (GSA) is applied to quantify the impact of 11 technical levers on 17 relevant charging system outputs. The GSA evaluates the E-Mobility integration in terms of grid impact, economic viability of CSs and Service Quality of the deployed Charging Infrastructure (SQCI). Based on this impact assessment we derive general guidelines for E-Mobility integration into regional systems. We found, inter alia, that CI policies should aim at allocating CSs across different types of locations to utilize cross-locational effects such as CSs at public locations affecting the charging peak in residential areas by up to 18%. Additionally, while improving the highway charging network is an effective lever to increase the SQCI in urban areas, public charging is an even stronger lever in rural areas.


2016 ◽  
Vol 856 ◽  
pp. 297-302 ◽  
Author(s):  
Anna Tsynaeva ◽  
Katerina Tsynaeva

Systems of heat consumption of the building with heat pump that uses low-grade heat source are investigated. Effectiveness of heat consumption systems with heat pump is concluded effective for severe climatic conditions prevailing in Russia. Characteristics of heat consumption system with heat pump and the traditional heating system are compared. In this case the heat pump is used the warmth of the environment, that is why considered operating conditions for the autumn and spring. Low inertia of heat systems with heat pump compared to traditional ones during autumn and spring proved.


2021 ◽  
Author(s):  
Dominik Husarek ◽  
Simon Paulus ◽  
Michael Metzger ◽  
Vjekoslav Salapic ◽  
Stefan Niessen

Since E-Mobility is on the rise worldwide, large Charging Infrastructure (CI) networks are required to satisfy the upcoming Charging Demand (CD). Understanding this CD with its spatial and temporal uncertainties is important for grid operators to quantify the grid impact of Electric Vehicle integration and for Charging Station (CS) operators to assess long-term CI investments. Hence, we introduce an Agent-based E-Mobility Model assessing regional CI systems with their multi-directional interactions between CSs and vehicles. A Global Sensitivity Analysis (GSA) is applied to quantify the impact of 11 technical levers on 17 relevant charging system outputs. The GSA evaluates the E-Mobility integration in terms of grid impact, economic viability of CSs and Service Quality of the deployed Charging Infrastructure (SQCI). Based on this impact assessment we derive general guidelines for E-Mobility integration into regional systems. We found, inter alia, that CI policies should aim at allocating CSs across different types of locations to utilize cross-locational effects such as CSs at public locations affecting the charging peak in residential areas by up to 18%. Additionally, while improving the highway charging network is an effective lever to increase the SQCI in urban areas, public charging is an even stronger lever in rural areas.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8399
Author(s):  
Michéle Weisbach ◽  
Tobias Schneider ◽  
Dominik Maune ◽  
Heiko Fechtner ◽  
Utz Spaeth ◽  
...  

This article deals with the major challenge of electric vehicle charging infrastructure in urban areas—installing as many fast charging stations as necessary and using them as efficiently as possible, while considering grid level power limitations. A smart fast charging station with four vehicle access points and an intelligent load management algorithm based on the combined charging system interface is presented. The shortcomings of present implementations of the combined charging system communication protocol are identified and discussed. Practical experiments and simulations of different charging scenarios validate the concept and show that the concept can increase the utilization time and the supplied energy by a factor of 2.4 compared to typical charging station installations.


2020 ◽  
Vol 12 (24) ◽  
pp. 10521
Author(s):  
Mariusz Szreder ◽  
Marek Miara

A standard Polish household with a central heating system powered by a solid fuel furnace was chosen as a case study. The modular Air Source Heat Pump (ASHP) was used to heat the hot water outside the heating season. In this article comparative studies of the impact of the compressor drive system used on the energy efficiency of the heat pump have been carried out in operating conditions. The ASHP heating capacity and coefficient of performance (COP) were determined for the outside air temperature in the range from 7 to 22 °C by heating the water in the tank to a temperature above 50 °C. For the case of a fixed speed compressor, average heating capacity in the range 2.7−3.1 kW and COP values in the range 3.2−4.6 depending on the evaporator supply air temperature were obtained. Similarly, for the inverter compressor, the average heating capacity in the range of 2.7−5.1 kW was obtained for the frequency in the range of 30–90 Hz and COP in the range 4.2−5.7, respectively. On cool days, the average heating capacity of the heat pump decreases by 12%. For the simultaneous operation of two compressors with comparable heating capacity, lower COP values were obtained by 20%.


Author(s):  
Tugba Gurler ◽  
Theo Elmer ◽  
Yuanlong Cui ◽  
Siddig Omer ◽  
Saffa Riffat

Abstract The case study presented in this paper is an innovative ground source heat pump (GSHP) system constituted by a hybrid Photovoltaic Thermal (PVT) solar system for poultry houses. Farmers tend to not to apply GSHPs because of the high prices of excavation and time consumption. The innovative heat pump system assessed in this study comprises of a new type of heat exchangers; a thin-tube solar polyethylene heat exchanger installed between roof tiles and PV panels and a novel vertical ground heat exchanger to utilize the heat stored in the soil. The heating system applied to a poultry house are monitored and evaluated under a variety of environmental and operating conditions to achieve annual/long-term efficiency of the heating system in Kirton, UK. The maximum heating demand of the poultry house is determined 34.4 MWh/PC while the minimum is 11,1 MWh/PC. The monitored results show that the heat pump produced 15.02 MWh of thermal energy per annum. Solar PV and heat pump worked very well together with solar PV covering all the heat pump’s annual electrical energy requirement and generated 8.74 MWh of extra electricity exported to the grid. The seasonal coefficient of performance is found 3.73 through a year. The novel PVT-GSHP heating system is a very promising solution for high fossil fuel consumption in the agriculture industry and the energy savings of the whole system can be noticeably increased dependent up on the system controlling.


Sign in / Sign up

Export Citation Format

Share Document