scholarly journals Development of a Clamping Device for Tensile Testing of Intracranial Flow Diverter Stents

2021 ◽  
Vol 4 (2) ◽  
pp. 83-86
Author(s):  
Csongor Bukor ◽  
Dóra Károly ◽  
Benjamin Csippa

Abstract The main danger of a brain aneurysm (a sack-like bulge on the vessel wall) is that in the event of a rupture a severe hemorrhage can occur which may cause death. However, if doctors have tools at their disposal, such as numerical models and simulations for analyzing patient-specific blood vessels, they could use them to decide if a particular treatment is necessary and if so, when. For such models, the different mechanical characteristics of the flow control devices are the input data. Several of these mechanical properties of the devices, such as modulus of elasticity and tensile strength, are determined by tensile testing. In the course of our research, we have developed a clamping device suitable for uniaxial tensile testing of flow diverter stents.

2002 ◽  
Vol 62 (1) ◽  
pp. 73-81 ◽  
Author(s):  
J. M. García Páez ◽  
A. Carrera ◽  
E. Jorge Herrero ◽  
I. Millán ◽  
A. Rocha ◽  
...  

2001 ◽  
Author(s):  
M. A. Haque ◽  
M. T. A. Saif

Abstract We present a MEMS-based technique for in-situ uniaxial tensile testing of freestanding thin films inside SEM and TEM. It integrates a freestanding thin film specimen with MEMS force sensors and structures to produce an on-chip tensile testing facility. Cofabrication of the specimen with force and displacement measuring mechanisms produces the following unique features: 1) Quantitative experimentation can be carried out in both SEM and TEM, 2) No extra gripping mechanism is required, 3) Specimen misalignment can be eliminated, 4) Pre-stress in specimen can be determined, and 5) Specimens with micrometer to nanometer thickness can be tested. We demonstrate the technique by testing a 200-nanometer thick Aluminum specimen in-situ in SEM. Significant strengthening and anelasticity were observed at this size scale.


2000 ◽  
Author(s):  
T. Jesse Lim ◽  
Wei-Yang Lu

Abstract In this work, uniaxial tensile testing of a 63Sn-37Pb alloy with different specimen sizes and aging conditions had been carried out. Although the stress-strain responses of different specimen sizes and aging conditions differs, the ultimate strength of the specimens with 16 hours, 100°C aging are similar for the sizes tested. The specimens with 25 days, 100°C aging have different stress-strain response with different sizes, and have a lower ultimate strength and higher failure strain compared to 16 hours, 100°C aging specimens.


2019 ◽  
Vol 180 ◽  
pp. 107962
Author(s):  
Haichao Gong ◽  
Qunbo Fan ◽  
Yu Zhou ◽  
Duoduo Wang ◽  
Pengru Li ◽  
...  

2000 ◽  
Vol 1723 (1) ◽  
pp. 125-132 ◽  
Author(s):  
Ghassan R. Chehab ◽  
Emily O’Quinn ◽  
Y. Richard Kim

Reliable materials characterization and performance prediction testing of asphalt concrete requires specimens that can be treated as statistically homogeneous and representative of the material being tested. The objective of this study was to select a proper specimen geometry that could be used for uniaxial tensile testing. Selection was based on the variation of air void content along the height of specimens cut and cored from specimens compacted by the Superpave gyratory compactor (SGC) and on the representative behavior under mechanical testing. From measurement and comparison of air void contents in cut and cored specimens, it was observed for several geometries that sections at the top and bottom and those adjacent to the mold walls have a higher air void content than do those in the middle. It is thus imperative that test specimens be cut and cored from larger-size SGC specimens. Complex modulus and constant crosshead-rate monotonic tests were conducted for four geometries—75 × 115, 75 × 150, 100 × 150, and 100 × 200 mm—to study the effect of geometry boundary conditions on responses. On the basis of graphical and statistical analysis, it was determined that there was an effect on the dynamic modulus at certain frequencies but no effect on the phase angle. Except for 75 × 115 mm, all geometries behaved similarly under the monotonic test. From these findings and other considerations, it is recommended that the 75- × 150-mm geometry, which is more conservative, and the 100- × 150-mm geometry be used for tensile testing.


Author(s):  
B. A. Samuel ◽  
Bo Yi ◽  
R. Rajagopalan ◽  
H. C. Foley ◽  
M. A. Haque

We present results on the mechanical properties of single freestanding poly-furfuryl alcohol (PFA) nanowires (aspect ratio > 50, diameters 100–300 nm) from experiments conducted using a MEMS-based uniaxial tensile testing device in-situ inside the SEM. The specimens tested were pyrolyzed PFA nanowires (pyrolyzed at 800° C).


Sign in / Sign up

Export Citation Format

Share Document