superpave gyratory compactor
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 2148 (1) ◽  
pp. 012055
Author(s):  
Qiuxiang Li ◽  
Jie Zheng ◽  
Mingfu Fu

Abstract Despite the common use of pervious concrete (PC), there is no standard way of producing the test specimens, which undergo testing to infer the behaviour of PC in the field. Vibrating table is the most common method but greatly reduced in vibration time compare with normal concrete in the laboratory. Marshall compaction and superpave gyratory compactor (SGC) are recommended standard molding methods for porous asphalt mixtures manufactured in the laboratory environment. Three kinds of pervious concrete samples with three target porosities were prepared by the above three methods, and the effects of the molding method on the physical properties, mechanical properties and durability of the samples were investigated in the study. Experimental results showed, with different molding methods adopting, pervious concrete with the same mixture design exhibits slightly different physical and mechanical properties. After analysis and comparison, SGC is the best choice to obtain concrete with high permeability, good freeze-thaw resistance and high strength, followed by Marshall compaction molding, and vibration molding is the last one. As a result, a win-win situation of the hydraulic characteristics and mechanical properties of pervious concrete can be achieved due to both optimized mix-design and appropriate molding method.


2021 ◽  
Vol 33 (6) ◽  
pp. 04021101
Author(s):  
Reza Shabani ◽  
Emin Sengun ◽  
Hande Isık Ozturk ◽  
Burhan Alam ◽  
Ismail Ozgur Yaman

2021 ◽  
Vol 8 ◽  
Author(s):  
Decai Wang ◽  
Hui Yao ◽  
Jinchao Yue ◽  
Shengneng Hu ◽  
Junfu Liu ◽  
...  

The objective of this study is to investigate the compaction characteristics of cold recycled mixtures with asphalt emulsion (CRME) using the Superpave gyratory compactor (SGC) method. Five characteristic parameters were proposed and calculated including the compaction energy index, the compaction energy index, three compaction energy indicators at different compaction stages. The influence of these parameters and material compositions were analyzed for the pavement performance. The difference between SGC and Marshall double-sided compaction/heavy compaction method was compared. The results show that the proposed parameters can better reflect the compaction characteristics of CRME, and the mixture effect with SGC of 50 gyrations was close to that with 75 blows using the Marshall compaction. The asphalt emulsion contents and compaction temperatures had a significant effect on compaction characteristics, but the effect of aggregate gradations was not significant. The appropriate asphalt emulsion and the new aggregate content can increase the capability of the CRME to resist the permanent deformation. The optimum mixing water content of CRME obtained by the SGC method was reduced by 18%, but the density increased by 3.5%, compared with the heavy compaction method. Finally, a new idea to determine the optimum emulsified asphalt content of CRME was provided through analyzing the compaction characteristic parameters.


2020 ◽  
Vol 23 (2) ◽  
pp. 106-116
Author(s):  
Mohammed A. Abed ◽  
Alaa H. Abed

This paper focused on evaluating the effect of aggregate gradation and polymer modification on indirect tensile strength (ITS) and the static stiffness for hot asphalt mixtures. In particular, data from ITS tests have been processed to obtain stiffness measurements through the application of Hondros theory. The results showed that fine mixtures had a better tensile strength by 26.3% than the coarse mixtures. The effect of compaction also was examined, the results showed that samples compacted with the Superpave gyratory compactor (SGC) had an enhancement in ITS by 36.58 and 23.1% in comparison with Marshall and roller compactor respectively. Polymer modifiers were used to estimate their effect on tensile strength, adding 4, 6, and 8% of Styrene-Butadiene-Styrene (SBS), which can rise the ITS by 3.2,6.14 and 13.3% of the non-modified asphalt mixture. Furthermore, using 4, 6, and 8 percent of SBS could increase static stiffness by 53.9, 209.6, and 302.4% respectively for roller compacted fine mixes and 58, 220, and 379.3% for SGC compacted mixes. Furthermore, SBS raised the stiffness modulus by 52.3, 188, and 295% for Marshall compacted mixes. Using hybrid modifier can improve the stiffness of the asphalt mixture. However, The results indicate that using 1, 2 and 3% polyvinyl chloride (PVC) can magnify the stiffness of mixtures by 41.2, 199.8% and 262.6 for roller compacted mixtures and 133.4, 212.1 and 354% for SGC compacted mixtures, whereas there is a stringent increasing by 133.4, 189.2 and 354% for Marshall compacted mixes. Otherwise, polymer-modification can decrease the fracturing index for coarse and fine mixtures.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3621
Author(s):  
Xiang Ma ◽  
Zhen Leng ◽  
Lili Wang ◽  
Peisheng Zhou

The compactability of an asphalt mixture is related to the heating temperature of the materials, but the heating temperature of reclaimed asphalt pavement (RAP) is limited by the production process of hot-in-plant recycled mixtures. To choose a reasonable heating temperature for RAP according to the compactability, the compaction energy ratio (CER) obtained from the Superpave gyratory compactor compaction curve was developed. The CERs of fourteen kinds of asphalt mixtures made with different RAPs were compared, all of which were different in type, content, and heating temperature. The results indicated that CER is an effective energy index to evaluate the workability of a bituminous mixture, and it considers both the accumulated energy after each gyration and the number of gyrations. It was also found that increasing the heating temperature of the RAP cannot always improve the workability of the recycled mixture, because the higher heating temperature caused more hard-aged bitumen to be blended with soft virgin bitumen during the mixing process. At the same RAP heating temperature, increasing the RAP content made it more difficult to compact the mixture, especially for RAPs with styrene–butadiene–styrene (SBS) modified bitumen, and the recycled mixtures with SBS-modified bitumen were more difficult to compact than those with nonmodified bitumen.


2020 ◽  
Vol 10 (7) ◽  
pp. 2523 ◽  
Author(s):  
Yingjun Jiang ◽  
Yu Zhang ◽  
Jinshun Xue ◽  
Changqing Deng ◽  
Tian Tian

In this study, stone mastic asphalt (SMA-13) mixtures were designed using three methods, namely the vertical-vibration testing method (VVTM), Marshall method, and superpave gyratory compactor method (SGC). The performances of SMA-13 designed by all three methods were measured and compared. Results show that the optimal asphalt content of the asphalt mixture was 5% lower in the VVTM-designed SMA-13 than in the Marshall-designed and SGC-designed asphalts mixture. In comparison with the Marshall- and SGC-designed asphalts mixture, the VVTM-designed SMA-13 exhibited higher density (2.4% and 2.2% increase, respectively), mechanical properties (32% and 13% increase, respectively), high-temperature rut resistance (30% and 8% increase, respectively), low-temperature crack resistance (20% and 17% increase, respectively), water stability (4% and 3% increase, respectively), and fatigue life (at least 33% and 9% increase, respectively). The VVTM-designed SMA-13 exhibited a deeper short-term aging degree than the other SMA-13 specimens, but a smaller long-term aging degree. In summary, the SMA-13 mixture designed by the VVTM method delivered a better road performance and durability than the traditional design method, enabling improved designs of SMA mixtures.


Sign in / Sign up

Export Citation Format

Share Document