clamping device
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 36)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Simon Rieß ◽  
Jonas Wiedemann ◽  
Sven Coutandin ◽  
Jürgen Fleischer

AbstractRobot based remanufacturing of valuable products is commonly perceived as promising field in future in terms of an efficient and globally competitive economy. Additionally, it plays an important role with regard to resource-efficient manufacturing. The associated processes however, require a reliable non-destructive disassembly. For these disassembly processes, there is special robot periphery essential to enable the tasks physically. Unlike manufacturing, within remanufacturing there are End-of-Life (EoL) products utilized. The specifications and conditions are often uncertain and varying. Consequently the robot system and especially the periphery needs to adapt to the used product, based on an initial examination and classification of the part. State of the art approaches provide limited flexibility and adaptability to the disassembly of electric motors used in automotive industry. Especially the geometrical shape is a limiting factor for using state of the art periphery for remanufacturing. Within this contribution a new kind of flexible clamping device for the disassembly of EoL electrical motors is presented. The robot periphery is systematically developed regarding the requirements stemming from the remanufacturing approach. It consists of three clamping units with moveable pins. Utilizing two linear axes, a two dimensional working space is realized for clamping the parts depending on their conditions and shape.


2021 ◽  
Vol 23 (6) ◽  
pp. 481-486
Author(s):  
K. Darques ◽  
A. Tounzi ◽  
A. Benabou ◽  
S. Shihab ◽  
J. Korecki ◽  
...  

In high power electrical machines, the leakage magnetic flux due to end windings induces eddy currents in clamping devices. However, it is quite difficult to quantify these losses. In order to study the effect of different clamping materials and the impact of the magnetization direction, an experimental mock-up composed of a stator and a clamping plate has been developed. An axial coil generates a circumferential magnetic flux in the stator core at different frequencies. Eddy current losses in the clamping plates are deduced from a power balance by subtracting Joule losses and iron losses from the total measured losses. Iron losses are deduced from 3D FE calculations while the impact of the frequency on B(H) curve is taken into account. Losses in the clamping device are then analyzed depending on experimental parameters.


2021 ◽  
Vol 4 (2) ◽  
pp. 75-78
Author(s):  
Botond-Antal Birton ◽  
Attila Gergely

Abstract The purpose of this work is to present the design of a laboratory scale vacuum forming machine, which can be used for the processing of thermoplastic sheets. The designed machine can process an A4 format plastic sheet. An important consideration in the design process was to follow a cost-effective approach. The vacuum forming instrument is made for educational purposes in the framework of a final project for the Polymer Technology Laboratory of the Department of Mechanical Engineering of the Sapientia EMTE University in Târgu Mureș. The structure and the operation of the machine is similar to that found in the industry. However, the cost of production is significantly lower. The main components of the machine include the frame, heater, vacuum pump and the clamping device.


2021 ◽  
Vol 4 (2) ◽  
pp. 83-86
Author(s):  
Csongor Bukor ◽  
Dóra Károly ◽  
Benjamin Csippa

Abstract The main danger of a brain aneurysm (a sack-like bulge on the vessel wall) is that in the event of a rupture a severe hemorrhage can occur which may cause death. However, if doctors have tools at their disposal, such as numerical models and simulations for analyzing patient-specific blood vessels, they could use them to decide if a particular treatment is necessary and if so, when. For such models, the different mechanical characteristics of the flow control devices are the input data. Several of these mechanical properties of the devices, such as modulus of elasticity and tensile strength, are determined by tensile testing. In the course of our research, we have developed a clamping device suitable for uniaxial tensile testing of flow diverter stents.


2021 ◽  
Vol 22 (18) ◽  
pp. 9840
Author(s):  
Charles Verney ◽  
David Legouis ◽  
Sandrine Placier ◽  
Tiffany Migeon ◽  
Philippe Bonnin ◽  
...  

Ischemia is a common cause of acute kidney injury worldwide, frequently occurring in patients undergoing cardiac surgery or admitted to the intensive care unit (ICU). Thus, ischemia-reperfusion injury (IRI) remains one of the main experimental models for the study of kidney diseases. However, the classical technique, based on non-traumatic surgical clamps, suffers from several limitations. It does not allow the induction of multiple episodes of acute kidney injury (AKI) in the same animal, which would be relevant from a human perspective. It also requires a deep and long sedation, raising the question of potential anaesthesia-related biases. We designed a vascular occluding device that can be activated remotely in conscious mice. We first assessed the intensity and the reproducibility of the acute kidney injury induced by this new device. We finally investigated the role played by the anaesthesia in the IRI models at the histological, functional and transcriptomic levels. We showed that this technique allows the rapid induction of renal ischemia in a repeatable and reproducible manner, breaking several classical limitations. In addition, we used its unique specificities to highlight the renal protective effect conferred by the anaesthesia, related to the mitigation of the IRI transcriptomic program.


Author(s):  
Dmitry Pavlovich Yastrebov ◽  
Oleg Aleksandrovich Belov ◽  
Vladimir Alekseevich Shvetsov ◽  
Andrey Pavlovich Ushakevich ◽  
Gleb Valerievich Kuznetsov ◽  
...  

The article highlights the test results of a non-standard reference electrode made of a stripped of insulation strand of aluminum wiring, which were conducted on board an auxiliary marine vessel PM-15. The potential of the ship’s hull was measured at the same control point using three reference electrodes: silver chloride electrode No. 1; aluminum electrode No. 2; aluminum electrode No. 3. The vessel’s hull potential was measured over five days. All three reference electrodes were used daily. With the help of each electrode, fifty parallel measurements of the potential of the ship’s hull were carried out with a time interval between measurements of 5 seconds. To assess the accuracy of the measurement results, they were processed statistically. The factors that must be taken into account in the development of technologies for manufacturing non-standard reference electrodes are listed: using available inexpensive materials; avoiding expensive equipment in manufacturing the reference electrode; eliminating complex methods of storage of reference electrodes on ships. There has been given a diagram of measuring electrical circuits including the steel hull, a bulwark, a multimeter, a clamping device, switches, a silver chloride reference electrode, aluminum wires, etc. The results of the study can be used on sea-going vessels to organize the control of the protective effect of the hulls of ships and vessels in the absence of standard reference electrodes.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 736
Author(s):  
Kang Wu ◽  
Jianzhong Lou ◽  
Chen Li ◽  
Jianping Li

A grafting machine is a kind of machine that can quickly graft scion to rootstock instead of manual grafting. Currently, an inclined inserted grafting machine uses the mechanical clamping method, which can easily damage the rootstock seedlings due to its high stiffness, thus, reducing the success rate of grafting. This study proposed an effective, flexible clamping device for grafting. The suction hole diameter (HD), the negative pressure (NP), and the surface inclination angle (IA) of the clamping device were studied via a single factor experiment to obtain optimal parameter ranges. Optimal HD, NP, and IA were 2–3 mm, 4–8 kPa, and 10–20°, respectively. The orthogonal experiment results showed that the optimal parameter combination for maximum holding success rate was HD, 2.5 mm; NP, 6 kPa; and IA, 10°. The experimental verification was carried out using the optimal parameter combination, with a holding success rate of 98.3% and no damage. This study provides a reference for the optimal design of an inclined inserted grafting machine.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2497
Author(s):  
Nussalin Thongcharoen ◽  
Sureurg Khongtong ◽  
Suthon Srivaro ◽  
Supanit Wisadsatorn ◽  
Tanan Chub-uppakarn ◽  
...  

An experimental study was carried out to develop and examine the properties of a new type of structural insulated panel (SIP). SIP prototypes conducted from this research consisted of insulated foam manufactured from natural rubber filled with wood particles as the core layer and three kinds of commercial wood-composite boards (plywood, cement particleboard, and fiber-cement board) as the surface layers. Polyurethane was used as an adhesive bond between the surface and the core layer. This preformed panel was placed into a clamping device and compressed until adhesive curing was achieved. The physical and mechanical properties of the SIP prototypes were consequently evaluated. The test results indicated that the types of surface layer materials played a significant effect on the SIP properties. The SIP covered with cement particleboard and fiber-cement board revealed high mechanical properties and high water resistance. The SIP prototype covered with plywood showed desirable properties (such as low density, high resistance of screw withdrawal, and low thermal transmittance). However, high water absorption and low fire resistance were drawbacks of the SIP covered with plywood. These properties should be improved.


Sign in / Sign up

Export Citation Format

Share Document