SMALL SPACECRAFT-BASED SPACE SYSTEM FOR REAL-TIME EARTH SURFACE MONITORING

Author(s):  
Aleksandr P. DANYLKIN ◽  
Vladimir N. VORONKOV ◽  
Oleg Yu. KAZANTSEV ◽  
Vyacheslav A. KETOV ◽  
Yury N. KOPTEV ◽  
...  

The paper presents basic results of exploratory design studies into a space system for real-time monitoring of the Earth surface based on small spacecraft* for Earth remote sensing, which provides acquisition in real time of highly detailed Earth surface images with resolution of 0.7–1.0 m, a swath of 20 km and 15m in-plane georeferencing accuracy from a ~300 km orbit with a mass of spacecraft ~200 kgf repeating with high frequency (at least every 1.0–1.5h). The said parameters are in line with the current state of the art and are quite feasible for our country’s industry. _________________________________________ * — for the purposes of this paper ‘small spacecraft’ is a 150-220 kg spacecraft. Key words: small spacecraft, space system, Earth remote sensing, satellite bus, payload module, electro-optical equipment, multipurpose ground facility, combined ground station, services of space monitoring of the Earth surface.

Author(s):  
Aleksandr P. DANYLKIN ◽  
Vladimir N. VORONKOV ◽  
Oleg Yu. KAZANTSEV ◽  
Vyacheslav A. KETOV ◽  
Yury N. KOPTEV ◽  
...  

The paper presents basic results of exploratory design studies into a space system for real-time monitoring of the Earth surface based on small spacecraft* for Earth remote sensing, which provides acquisition in real time of highly detailed Earth surface images with resolution of 0.7–1.0 m, a swath of 20 km and 15m in-plane georeferencing accuracy from a ~300 km orbit with a mass of spacecraft ~200 kgf repeating with high frequency (at least every 1.0–1.5h). The said parameters are in line with the current state of the art and are quite feasible for our country’s industry. _________________________________________ * — for the purposes of this paper ‘small spacecraft’ is a 150-220 kg spacecraft. Key words: small spacecraft, space system, Earth remote sensing, satellite bus, payload module, electro-optical equipment, multipurpose ground facility, combined ground station, services of space monitoring of the Earth surface.


Author(s):  
Aleksandr N. KIRILIN ◽  
Ravil N. AKHMETOV ◽  
Aleksandr I. BAKLANOV ◽  
Nikolay R. STRATILATOV ◽  
Valeriy I. ABRASHKIN ◽  
...  

The description of the unified platform of small spacecraft AIST-2 is presented. The platform is intended to accommodate various types of science equipment, Earth remote sensing equipment and onboard support systems. The description of the unified platform design, main onboard systems, ground control facilities, data acquisition and processing is given. The results of design studies, construction and operation of small spacecraft built on the basis of the AIST-2 unified platform are presented. The design, onboard composition, technical characteristics and results of operation of the first small spacecraft in the line – AIST-2D which it was launched on April 28, 2016 in the scope of the first launch campaign from the Vostochny Cosmodrome by the Soyuz-2.1a launch vehicle with the Volga ascent unit are described in detail. The results of design studies on the development of advanced small spacecraft based on the AIST-2 platform capable of functioning as part of the space monitoring system are described. Key words: small spacecraft, unified platform, design configuration, remote sensing of the Earth, stereoscopic image equipment, electro-rocket propulsion system.


2019 ◽  
Vol 75 ◽  
pp. 01005 ◽  
Author(s):  
Mikhail V. Saramud ◽  
Igor V. Kovalev ◽  
Vasiliy V. Losev ◽  
Mariam O. Petrosyan ◽  
Dmitriy I. Kovalev

The article describes the use of a multi-version approach to improve the accuracy of the classification of images when solving the problem of image analysis for Earth remote sensing. The implementation of this approach makes it possible to reduce the classification error and, consequently, to increase the reliability of processing remote sensing data. A practical study was carried out in a multi-version real-time execution environment, which makes it possible to organize image processing on board of an unmanned vehicle. The results confirm the effectiveness of the proposed approach.


Author(s):  
Dmitriy Vasin ◽  
Pavel Pahomov ◽  
Sergey Rotkov

The work is a continuation of the authors' research on the problem of adaptive compression of raster hyperspectral images of Earth remote sensing. In the first part of the article, the authors give an overview of the current state of affairs in the processing of images of remote sensing of the Earth, the characteristic properties of raster hyperspectral images in the context of the prospects for lossy compression, the problems of the effectiveness of existing compression methods of this type of graphic documents are indicated. Further, the article highlights the issues of increasing the efficiency of methods for eliminating information redundancy of raster hyperspectral images of Earth remote sensing. The problems of designing and creating parallel methods and algorithms for the compression of raster hyperspectral ERS images are considered. A method for the development of a parallel algorithm for constructing a system of local homogeneous "well-adapted" basis functions for raster hyperspectral images, based on the Chebyshev approximation for systems using the CUDA graphics processor, is proposed.


2021 ◽  
Vol 22 (2) ◽  
pp. 148-161
Author(s):  
Alexander V. Starkov ◽  
Andrey А. Emelyanov ◽  
Lyubov A. Grishantseva ◽  
Ksenia I. Zhukovskaya ◽  
Alexander A. Morozov ◽  
...  

In the second part of the series of articles, the issues of the systemic organization of mathematical models for solving the problem of controlling the flows of target information in the Earth remote sensing space system are considered. A description of the interrelated mathematical models of the orbital constellation as components of the information system, the main task of which is to survey ground objects and the formation of the initial volume of information for its further processing, is presented. To calculate the time of servicing the request by the space segment, the following methods of formation are proposed: a model of the evolution of the Earth remote sensing spacecraft orbit; model for forecasting possible spacecraft correction intervals to maintain nominal orbital parameters; model for forecasting possible time intervals for on / off cycles of observation equipment; model for forecasting possible time intervals for dumping the received information to the information reception points. When calculating the cost of servicing a single request from the orbital complex, both the cost of servicing one spacecraft per unit of time and the cost of processing a single request from the ground complex were taken into account. In conclusion, a generalized form of representation of the target information flow model of the Earth remote sensing space system is proposed as an interconnected sequence of functions for changing the amount of information when an appropriate processing process (traffic change functions) is applied to it. General approaches to solving the optimization problem are considered.


2007 ◽  
Vol 13 (2) ◽  
pp. 39-42
Author(s):  
A.I. Kirillov ◽  
◽  
Ye.I. Kapustin ◽  
N.A. Kirillova ◽  
E.I. Makhonin ◽  
...  

1997 ◽  
Vol 3 (3-4) ◽  
pp. 50-53
Author(s):  
O.D. Fedorovskyi ◽  
◽  
V.I. Kononov ◽  
K.Yu. Sukhanov ◽  
◽  
...  

Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article deals with the issues related to the problem of ballistic design of the space system of remote sensing of the Earth on stable near-circular solar-synchronous orbits with long-term existence of spacecraft. We propose a rational method of maintaining a solar-synchronous orbit in given light conditions with prolonged active lifetime of space systems. In solving this problem, the total time of normal operation of the system for a given period of operation, during which the most favorable conditions for the use of spacecraft are provided on the main parts of orbits, is taken as a target function.


Sign in / Sign up

Export Citation Format

Share Document