scholarly journals The results of the study of the direct seeding in the Research Institute of Agriculture of Crimea

Author(s):  
E.N. Turin ◽  
◽  
K.G. Zhenchenko ◽  
A.A. Gongalo ◽  
V.Yu. Ivanov ◽  
...  

The research aimed to study the influence of different tillage-and-planting systems on the soil density of chernozem southern in the central steppe of the Crimea. The soil density is a very important parameter both in the direct seeding and conventional tillage since the no-tillage crop production system is that left soil undisturbed. The stationary experimental site is situated in the village of Klepinino Krasnogvardeyskiy district Republic of Crimea (Department of Field Сrops, FSBSI “Research Institute of Agriculture of Crimea”). This report provides data for 2019. Even though the direct seeding does not include topsoil loosening, the soil density parameters are optimal (1-1.4 g/cm3) in the 0-10-centimeter layer for the development of the roots of the studied crops. In the 10-20 and 20-30 cm layers, the soil in the reporting period is a little over-compacted despite the farming system

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peng Jiang ◽  
Fuxian Xu ◽  
Lin Zhang ◽  
Mao Liu ◽  
Hong Xiong ◽  
...  

AbstractSimplified cultivation methods for rice production offer considerable social, economic, and environmental benefits. However, limited information is available on yield components of rice grown using simplified cultivation methods in a rice-ratoon rice cropping system. A field experiment using two hybrid and two inbred rice cultivars was conducted to compare four cultivation methods (conventional tillage and transplanting, CTTP; conventional tillage and direct seeding, CTDS; no-tillage and transplanting, NTTP; no-tillage and direct seeding, NTDS) in a rice-ratoon rice system from 2017 to 2020. Main season yields for CTDS and NTDS were higher than for CTTP by 6.1% and 2.8%, respectively; whereas ratoon season yields for CTDS and NTDS were equal to or higher than for CTTP. Annual grain yields for CTDS and NTDS were higher than for CTTP by 4.4% and 3.2%, respectively. The higher CTDS and NTDS yields were associated with higher panicle numbers per m2 and biomass production. Rice hybrids had higher yields than inbred cultivars by 15.8–19.3% for main season and by 15.6–19.4% for ratoon season, which was attributed to long growth duration, high grain weight and biomass production. Our results suggest that CTTP can be replaced by CTDS and NTDS to maintain high grain yields and save labor costs. Developing cultivars with high grain weight could be a feasible approach to achieve high rice yields in the rice-ratoon rice cropping system in southwest China.


1985 ◽  
Vol 25 (3) ◽  
pp. 568 ◽  
Author(s):  
GB Taylor

In a rotation of 1 year pasture/l year crop, a subterranean clover (Trifolium subterraneum cv. Daliak) pasture was either left untilled or subjected to minimum or conventional tillage. One set of tillage treatments was imposed in each ofthree crop years while another set of treatments was imposed in only the first crop year. Regenerating clover plants were prevented from setting seed. In the first crop, 44% of the clover seeds were buried below 2 cm of soil by minimum tillage; this proportion was 65% in the conventional tillage treatment. In the first pasture regeneration year, seedling densities were highest in the no-tillage treatment. Conversely, there were more residual seeds in the tilled treatments and, in the second and third pasture regeneration years, this led to higher seedling densities than in the no-tillage treatment. The effects of tillage were more marked in the conventional than in the minimum-tillage treatment. Clover establishment was improved by repeat tillage operations which returned some of the buried seeds closer to the soil surface. Although more seedlings overall were obtained from the no-tillage treatment, the disadvantage of fewer seedlings in the tilled treatments was offset by the spread of seedling establishment over a number of pasture years. This spread, which would be more marked with harder-seeded cultivars, could be desirable in environments in which clover seed production is unreliable.


2010 ◽  
Vol 28 (1) ◽  
pp. 19-22
Author(s):  
Waldir Aparecido Marouelli ◽  
Rômulo P Abdalla ◽  
Nuno R Madeira ◽  
Henoque R da Silva ◽  
Aureo S de Oliveira

The objective of the present study was to evaluate the effects of crop residue covers (0.0; 4.5; 9.0; 13.5 t ha-1 millet dry matter) on water use and production of onion cultivated in no-tillage planting system (NT) as compared to conventional tillage system (CT). The study was carried out at Embrapa Hortaliças, Brazil, under the typical Savanna biome. Irrigations were performed using a sprinkle irrigation system when soil-water tension reached between 25 and 30 kPa. The experimental design was randomized blocks with three replications. Total net water depth applied to NT treatment was 19% smaller than the CT treatment, however, water savings increased to 30% for the first 30 days following seedlings transplant. Crop biomass, bulb size and yield, and rate of rotten bulbs were not significantly affected by treatments. The water productivity index increased linearly with increasing crop residue in NT conditions. Water productivity index of NT treatments with crop residue was on average 30% higher than that in the CT system (8.13 kg m-3).


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 297
Author(s):  
Rosa Francaviglia ◽  
Jorge Álvaro-Fuentes ◽  
Claudia Di Bene ◽  
Lingtong Gai ◽  
Kristiina Regina ◽  
...  

In the European Union, various crop diversification systems such as crop rotation, intercropping and multiple cropping, as well as low-input management practices, have been promoted to sustain crop productivity while maintaining environmental quality and ecosystem services. We conducted a data analysis to identify the benefits of crop associations, alternative agricultural practices and strategies in four selected regions of Europe (Atlantic, Boreal, Mediterranean North and Mediterranean South) in terms of crop production (CP). The dataset was derived from 54 references with a total of 750 comparisons and included site characteristics, crop information (diversification system, crop production, tillage and fertilization management) and soil parameters. We analyzed each effect separately, comparing CP under tillage management (e.g., conventional tillage vs. no tillage), crop diversification (e.g., monoculture vs. rotation), and fertilization management (e.g., mineral fertilization vs. organic fertilization). Compared with conventional tillage (CT), CP was higher by 12% in no tillage (NT), in fine- and medium-textured soils (8–9%) and in arid and semiarid sites located in the Mediterranean Region (24%). Compared to monoculture, diversified cropping systems with longer crop rotations increased CP by 12%, and by 12% in soils with coarse and medium textures. In relation to fertilization, CP was increased with the use of slurry (40%), and when crop residues were incorporated (39%) or mulched (74%). Results showed that conversion to alternative diversified systems through the use of crop rotations, with NT and organic fertilization, results in a better crop performance. However, regional differences related to climate and soil-texture-specific responses should be considered to target local measures to improve soil management.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yang Su ◽  
Benoit Gabrielle ◽  
David Makowski

AbstractNo tillage (NT) is often presented as a means to grow crops with positive environmental externalities, such as enhanced carbon sequestration, improved soil quality, reduced soil erosion, and increased biodiversity. However, whether NT systems are as productive as those relying on conventional tillage (CT) is a controversial issue, fraught by a high variability over time and space. Here, we expand existing datasets to include the results of the most recent field experiments, and we produce a global dataset comparing the crop yields obtained under CT and NT systems. In addition to crop yield, our dataset also reports information on crop growing season, management practices, soil characteristics and key climate parameters throughout the experimental year. The final dataset contains 4403 paired yield observations between 1980 and 2017 for eight major staple crops in 50 countries. This dataset can help to gain insight into the main drivers explaining the variability of the productivity of NT and the consequence of its adoption on crop yields.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 845C-845 ◽  
Author(s):  
Lynn Marie Sosnoskie* ◽  
John Cardina ◽  
Catherine Papp Herms ◽  
Matthew Kleinhenz

Community composition of the soil seedbank were characterized 35 years after the implementation of a long-term study involving cropping sequences (continuous corn, corn-soybean, corn-oat-hay) and tillage systems (conventional-, minimum- and no-tillage). Germinable seeds within the top 10 cm of soil in early spring were identified and enumerated in 1997, 1998 and 1999. Species diversity, which was characterized by richness (S), evenness (E) and the Shannon-Weiner index (H'), was significantly influenced by crop rotation rather than tillage. Generally, diversity measures were greatest in the corn-oat-hay sequences as compared to the corn-soybean rotations and the corn monoculture. Species richness and H' typically declined with increasing soil disturbance (no-tillage > minimum-tillage > conventional-tillage), whereas E increased with more intense tillage. A synthetic importance value (RI), incorporating both density and frequency measures, was generated for each species in each plot. Multiresponse permutation procedures (MRPP) were used to examine differences in weed community composition with respect to management system for all three years. Results suggest that the weed seed community in a corn-oat-hay rotational system differs substantially, in structure and composition, from communities associated with continuous corn and corn-soybean systems. No tillage systems were significantly different in composition as compared to conventional tillage and minimum tillage treatments. Crop sequence and tillage system are important cultural methods of shifting weed species number and diversity, and therefore, community structure. Manipulation of these factors could help to reduce the negative impact of weeds on crop production.


2013 ◽  
Vol 49 (4) ◽  
pp. 524-542 ◽  
Author(s):  
HARI RAM ◽  
YADVINDER SINGH ◽  
K. S. SAINI ◽  
D. S. KLER ◽  
J. TIMSINA

SUMMARYContinuous rice–wheat (RW) cropping with intensive tillage has resulted in land degradation and inefficient use of water in Indo-Gangetic Plains (IGP) of South Asia. Replacement of rice with less water requiring crops such as soybean in RW system and identification of effective strategies for tillage management could result in sustainable cropping system in IGP. A field experiment was conducted for five years on an annual soybean–wheat (SW) rotation in the northwest IGP of India to evaluate effect of tillage, raised bed planting and straw mulch on yield, soil properties, water use efficiency (WUE) and profitability. In soybean, straw mulch reduced soil temperature at seeding depth by about 2.5 °C compared with no mulch. Straw mulch also resulted in slightly reduced water use and slightly higher WUE relative to their respective unmulched treatments. During wheat emergence, raised beds resulted in higher soil temperature by 1.6 °C compared with flat treatments. Bulk density and cumulative infiltration were greater in no-tillage compared with conventional tillage. Soil organic carbon in surface layer increased significantly after five years of experimentation. Soybean and wheat yields were similar under different treatments during all the years of experimentation. Soybean and wheat planted on raised beds recorded about 17% and 23% higher WUE, respectively, than in flat layout. The net returns from SW system were greater in no-tillage and permanent raised beds than with conventional tillage. Both no-tillage and permanent raised bed technologies can be adopted for sustainable crop production in SW rotation in northwest IGP. However, more studies are required representing different soil types and climate conditions for making recommendations for other regions of IGP.


1990 ◽  
Vol 70 (4) ◽  
pp. 641-653 ◽  
Author(s):  
J. P. WINTER ◽  
R. P. VORONEY ◽  
D. A. AINSWORTH

Cultivation is known to reduce the number and diversity of microarthropod (Acarina and Collembola) populations from levels observed under natural forest or grassland vegetation. Under no-tillage crop production, the soil remains relatively undisturbed and plant litter decomposes at the soil surface, much like in natural soil ecosystems. The objective of this study was to investigate whether microarthropod populations under long-term (19 yr) continuous corn (Zea mays L.) production were increased by no-tillage (NT) vs. conventional tillage (CT; moldboard plow and harrowing) management. Numbers of microarthropods were also obtained from a soil managed as the CT treatment for 15 yr until seeding to bromegrass (Bromus inermus L.) hay for the last 4 yr. During the growing seasons over 2 yr, soil cores were taken every 2–3 wk and extracted for microarthropods using a high gradient extractor. The surface 5 cm of soil was sampled during the first year. All three treatments were different (P < 0.05), with bromegrass, NT and CT soils containing respectively, 15.9, 12.4, and 5.8 microarthropods × 1000 m−2 of which 84, 69, and 70% were Acarina. In the second year, the surface 15 cm was sampled and the number of microarthropods in the corn soils was similar (P < 0.05), containing 33.6 microarthropods × 1000 m−2, 92–98% of which were Acarina. However, microarthropods and soil organic-C were more concentrated in the surface 5 cm of soil in NT than CT. The soil under bromegrass contained 1.3 times more microarthropods (99% were Acarina) than under continuous NT and CT corn. Thus, when examined to a depth of 15 cm, 19 yr of NT corn did not increase the size of the microarthropod populations compared to CT, whereas production of bromegrass hay for 3–4 yr following long-term continuous CT corn did increased microarthropod numbers. Key words: Microarthropods, Collembola, Acarina, Zea mays, Bromus inermus, no-tillage, conservation tillage, soil carbon


1996 ◽  
Vol 36 (8) ◽  
pp. 995 ◽  
Author(s):  
K Thiagalingam ◽  
NP Dalgliesh ◽  
NS Gould ◽  
RL McCown ◽  
AL Cogle ◽  
...  

The results of 5 short-term (4-8 years) experiments and farm demonstrations in which no-tillage technology was compared with conventional or reduced tillage in the semi-arid tropics of the Northern Territory and Far North Queensland, during the mid 1980s to mid 1990s, are reviewed. In the Douglas-Daly and Katherine districts of the Northern Territory, dryland crops of maize, sorghum, soybean and mungbean sown using no-tillage with adequate vegetative mulch on the soil surface have produced yields comparable with, or higher than (especially in drier years), those obtained under conventional tillage. The importance of a surface mulch in ameliorating soil temperature, moisture and fertility, and in reducing soil movement and loss in crop production in the semi-arid tropics was confirmed. Management of mulch (pasture, crop residues and weeds) will be crucial in the application of no-tillage technology to the development of mixed dryland crop and livestock enterprises in the semi-arid tropics.


2021 ◽  
Author(s):  
Peng Jiang ◽  
Fuxian Xu ◽  
Lin Zhang ◽  
Liu Mao ◽  
Hong Xiong ◽  
...  

Abstract Simplified cultivation methods for rice production offer considerable social, economic, and environmental benefits. However, limited information is available on yield components of rice grown using simplified cultivation methods in a rice-ratoon rice cropping system. A field experiment using two hybrids and two rice cultivars was conducted to compare four cultivation methods (conventional tillage and transplanting, CTTP; conventional tillage and direct seeding, CTDS; no-tillage and transplanting, NTTP; no-tillage and direct seeding, NTDS) in a rice-ratoon rice system from 2017–2020. Main season yields for CTDS and NTDS were higher than for CTTP, whereas ratoon season yields for CTDS and NTDS were equal to or higher than for CTTP. Annual grain yields for CTDS and NTDS were higher than for CTTP. The higher CTDS and NTDS yields were associated with higher panicle numbers per m2 and biomass production. Rice hybrids had significantly higher yields than inbred cultivars, which was attributed to high grain weight and biomass production. Our results suggest that CTTP can be replaced by CTDS and NTDS to maintain high grain yields and save labor costs. Developing cultivars with high grain weight could be a feasible approach to achieve high rice yields in the rice-ratoon rice cropping system in southwest China.


Sign in / Sign up

Export Citation Format

Share Document