scholarly journals Identification of allelic combinations of the Ppd-D1, Vrn-A1, Vrn-B1 and Vrn-D1 genes in common wheat lines obtained in the National Center of Grain named after P. P. Lukyanenko

Author(s):  
Yu.S. Zubanova ◽  
◽  
V.A. Filobok ◽  
E.A. Guenkova ◽  
E.R. Davoyan ◽  
...  

An analysis of the allelic composition of the genes determining photoperiodic sensitivity (Ppd-D1) and the need for vernalization (Vrn-A1, Vrn-B1, Vrn-D1) was carried out in 286 common wheat lines obtained in the National Center of Grain named after P. P. Lukyanenko with the use of allele-specific primers. The analyzed samples were distributed over 21 haplotypes; the dominant allele of the Ppd-D1a gene prevailed in the studied material. 123 lines of common wheat carry a combination of D-RRD alleles. The lines that can be attributed to the group of alternate wheat (R-RDR, R-RRD) were identified. All studied samples carry the recessive allele of at least one VRN1 gene.

2010 ◽  
Vol 44 (6) ◽  
pp. 345-353
Author(s):  
A. M. Polishchuk ◽  
S. V. Chebotar ◽  
E. M. Blagodarova ◽  
N. A. Kozub ◽  
I. A. Sozinov ◽  
...  

1997 ◽  
Vol 77 (06) ◽  
pp. 1154-1155 ◽  
Author(s):  
Gary D Sinclair ◽  
Sandra Low ◽  
Man-Chiu Poon

SummaryWe describe a novel hemi-nested, allele specific whole blood PCR assay for detection of the factor V Leiden mutation associated with the plasma defect, activated protein C resistance. This assay utilizes 5 μl of whole blood without prior DNA extraction. The hemi-nested design, employing an outer primer pair in combination with nested, allele specific primers obviates the need for restriction enzyme digestion. PCR reactions are analysed directly on agarose or polyacrylamide minigels. The assay confirmed the genotypes of 50 individuals previously categorized by PCR and Mnll digestion, and has been subsequently utilized in the genotyping of 445 individuals referred for thrombosis studies.


Weed Science ◽  
2021 ◽  
pp. 1-19
Author(s):  
David J. Brunton ◽  
Peter Boutsalis ◽  
Gurjeet Gill ◽  
Christopher Preston

Abstract Populations of rigid ryegrass (Lolium rigidum Gaudin) from southern Australia have evolved resistance to the thiocarbamate herbicide prosulfocarb. The inheritance of prosulfocarb resistance was explored by crossing R and S individuals. In all families within each cross, except 16.2, the response of the F1 were intermediate between the parents, suggesting that resistance is inherited as a single, partially dominant trait. For 16.2, the response of the F1 was more similar to the susceptible parent, suggesting resistance may be a recessive trait in this population. Segregation at the discriminating dose of 1200 g a.i. ha−1 prosulfocarb in populations 375-14 fitted the ratio (15:1) consistent with two independent dominant alleles; 198-15 fitted a ratio (13:3) for two independent alleles, one dominant and one recessive; and EP162 fitted a ratio (9:7) for two additive dominant alleles. In contrast segregation of population 16.2 fitted a (7:9) ratio consistent with two independent recessive alleles contributing to prosulfocarb resistance. Four different patterns of resistance to prosulfocarb were identified in different resistant populations, with inheritance as a dominant allele, dominant and recessive, additive dominant and as an independent recessive allele. This suggests there are several different mechanisms of prosulfocarb resistance present in L. rigidum.


2008 ◽  
Vol 29 (20) ◽  
pp. 4130-4140 ◽  
Author(s):  
Hidenobu Yaku ◽  
Tetsuo Yukimasa ◽  
Shu-ichi Nakano ◽  
Naoki Sugimoto ◽  
Hiroaki Oka

2018 ◽  
Vol 17 (03) ◽  
pp. 213-220 ◽  
Author(s):  
Teresa Bieńkowska ◽  
Elżbieta Suchowilska ◽  
Wolfgang Kandler ◽  
Rudolf Krska ◽  
Marian Wiwart

AbstractThe grain of modern wheat cultivars has a significantly lower mineral content, including the content of copper, iron, magnesium, manganese, phosphorous, selenium and zinc. For this reason cereal breeders, are constantly searching for new genetic sources of minerals that are essential in human nutrition. Triticum polonicum, which is grown on a small scale in Spain, southern Italy, Algeria, Ethiopia and warm regions of Asia, deserves special attention in this context. The micronutrient and macronutrient content of T. polonicum versus T. durum and T. aestivum was compared in this study. Polish wheat grain was characterized by the significantly highest content of phosphorus (4.55 g/kg), sulphur (1.82 g/kg), magnesium (1.42 g/kg), zinc (49.5 mg/kg), iron (39.1 mg/kg) and boron (0.56 mg/kg) as well as a low content of aluminium (only 1.04 mg/kg). The macronutrient profile of most T. polonicum lines differed completely from that of common wheat and durum wheat. The principal component analysis supported discrimination of seven Polish wheat lines with a particularly beneficial micronutrient profile (P2, P3, P5, P7, P9, P22 and P25). These lines were characterized by the highest content of copper, iron and zinc, as well as the lowest concentrations of strontium, aluminium and barium which are undesirable in food products. The above lines can be potentially applied as source materials for breeding new wheat varieties. The results of this study indicate that Polish wheat could be used in genetic biofortification of durum wheat and common wheat.


2016 ◽  
Vol 52 ◽  
pp. 1-8 ◽  
Author(s):  
Raghu Paramasivam ◽  
Nandhakumar Rengasamy ◽  
Deva Arumugam ◽  
Prabhakaran Krishnan

The Renin-Angiotensin System (RAS) is an important regulator of the blood pressure (BP). The level of the vasoactive peptide Angiotensin-II, is mainly determined by the RAS enzyme, angiotensin converting enzyme-1 (ACE-1). Polymorphisms in ACE gene is reported to be associated with hypertension in various populations worldwide. We investigated the association of ACE I/D polymorphisms with hypertension among the tribal populations of South India. Samples were collected from hypertensive patients (n = 33) and healthy controls (n = 37). Genotyping was performed using Polymerase chain reaction (PCR) with allele specific primers. The DD genotype is significantly observed among the cases (OR = 1.0). Specifically, the DD genotype is more evident among the females (OR = 0 .705) than males (OR = 1.22) and is analysed to be associated with hypertension among the tribal populations of South India.


2014 ◽  
Vol 12 (3) ◽  
pp. 353-356 ◽  
Author(s):  
Jeong Hwan Ahn ◽  
Soo-Kyung Lee ◽  
Chul Soo Park

The allelic variations at glutenin loci could significantly affect the bread baking quality, and specific glutenin alleles might be closely associated with greater gluten strength, which, in turn, is related to superior bread baking quality. In this study, allelic variations at Glu-1, Glu-A3 and Glu-B3 loci were evaluated in 222 Korean wheat landraces using gene-specific polymerase chain reaction (PCR) markers. Ten alleles were identified at Glu-1 loci. Glu-A1c, Glu-B1b, and Glu-D1a or Glu-D1f alleles were predominantly found at the respective loci and their frequencies were 86.5, 87.8 and 96.9 %, respectively. Seven Korean wheat landraces carried the Glu-D1d allele, and only one Korean wheat landrace (IT173162) achieved 10 points for the Glu-1 score. Fifteen alleles were identified at Glu-A3 and Glu-B3 loci; Glu-A3c and Glu-B3d or Glu-B3i alleles were commonly found at the respective loci and their frequencies were 77.0, 33.3 and 37.8 %, respectively. Glu-B3 alleles exhibited the highest genetic diversity than other alleles, while Glu-B1 and Glu-A1 alleles exhibited the lowest genetic diversity than other alleles. Twenty Korean wheat landraces had the Glu-A3d and Glu-B3b, Glu-B3d, Glu-B3f, Glu-B3g or Glu-B3i alleles, which were correlated with superior bread baking quality. Among these wheat lines, two (IT59787 and IT236544) carried the Glu-D1d allele.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 186
Author(s):  
Mikhail Bazhenov ◽  
Anastasiya Chernook ◽  
Pavel Kroupin ◽  
Gennady Karlov ◽  
Mikhail Divashuk

The Dwarf53 (D53) gene, first studied in rice, encodes a protein that acts as a repressor of the physiological response of plants to strigolactones—substances that regulate the activity of axillary buds, stem growth, branching of roots and other physiological processes. In this work, we isolated and sequenced the homolog of the D53 gene in several accessions of the wild grass Dasypyrum villosum of different geographical origins, resulting in the discovery of large allelic variety. A molecular marker was also created that allows us to differentiate the D. villosum D53 gene from common wheat genes. Using this marker and monosomic addition, substitution and translocation wheat lines carrying the known D. villosum chromosomes, the D53 gene was localized on the long arm of the 5V chromosome.


Sign in / Sign up

Export Citation Format

Share Document