The Dynamics of Flow on a Submarine Ridge

Tellus ◽  
1960 ◽  
Vol 12 (4) ◽  
pp. 419-426
Author(s):  
K. F. Bowden
Keyword(s):  
1986 ◽  
Vol 60 (2) ◽  
pp. 249-267
Author(s):  
Ted F. W. Bergen ◽  
Joanne Sblendorio-Levy ◽  
John T. Twining ◽  
Richard E. Casey

Lower bathyal sediments representing portions of the Luisian and Mohnian stages of Kleinpell (1938) occur on a submarine ridge near Tanner Bank, offshore southern California. The presence of abundant and well-preserved calcareous nannofossils, diatoms, silicoflagellates, radiolarians and foraminifera allows accurate correlations with the onshore type sections of these stages. In terms of the calcareous nannofossil zones, the age range is from the Sphenolithus heteromorphus Zone to the Discoaster kugleri Zone. Although abundant benthic foraminifera indicative of the Luisian and Mohnian are present, they are accompanied by species more characteristic of the Pliocene Repettian Stage of Natland (1952) and the Pliocene-Miocene “Delmontian” Stage of Kleinpell (1938). Many of these latter species live today at lower bathyal depths (below 2,000 m), others occur in lower bathyal sediments as old as Oligocene, but are absent in the onshore type sections of the Luisian and Mohnian stages in coastal California. We ascribe their absence in onshore sequences to deposition at middle bathyal depths. The known chronostratigraphic ranges of several species are extended and five new species and two new subspecies of benthic foraminifera are described.The following new taxa are described: Bolivina pelita n. sp., Cassidulinella inflata n. sp., Globocassidulina undulata n. sp., Cibicidoides mckannai miocenicus n. subsp., C. mckannai sigmosuturalis n. subsp., Pullenia fragilis n. sp., Parafissurina inornata n. sp.


2011 ◽  
Vol 439 (1) ◽  
pp. 926-932 ◽  
Author(s):  
A. N. Sukhov ◽  
V. D. Chekhovich ◽  
A. V. Lander ◽  
S. L. Presnyakov ◽  
E. N. Lepekhina
Keyword(s):  

2003 ◽  
Vol 4 (9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Karen S. Harpp ◽  
Daniel J. Fornari ◽  
Dennis J. Geist ◽  
Mark D. Kurz

2019 ◽  
Vol 47 (4) ◽  
pp. 106-127
Author(s):  
K. V. Popov ◽  
A. M. Gorodnitskiy ◽  
N. A. Shishkina

As part of the study of the nature of magnetic anomalies associated with the deep layers of the oceanic crust, a comparative analysis was made of the petromagnetic characteristics of serpentinized mantle ultrabasic samples taken from oceanographic expeditions of the Institute of Oceanology and the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences in various morphotectonic regions of the World Ocean. The purpose of the work is to obtain information on the composition, concentration, crystallization temperature and structural features of ferromagnetic minerals, which are formed in different conditions of the post-magmatic metamorphism of ultrabasites. Sample collections are divided into three groups. 1. Oceanic peridotites from the rift zones of the mid-ocean ridges and transform faults. 2. Peridotites of the submarine ridge Gorringe, located within the Azoro-Gibraltar zone of faults. 3. Dunites of the Pekulney complex (Chukotka) formed in the island arc system. It has been established that in all selected regions, samples of serpentinized hyperbasites have high values of natural residual magnetization, magnetic susceptibility and saturation magnetization. The highest values of magnetic parameters are the dunites of the Pekulney complex. Estimation of the dependence of the concentration of ferrimagnetic materials C% of the degree of serpentinization of the SS%. showed that it is practically of little significance. The main factors contributing to the increase in the concentration of magnetite are the increased iron content of olivine in ultrabasites and the temperature of metamorphism. The question of the period of formation of magnetites and the stability of their primary residual magnetization requires further study.


GeoArabia ◽  
1997 ◽  
Vol 2 (3) ◽  
pp. 279-304
Author(s):  
Geraint W. Hughes

ABSTRACT Within the Arabian Peninsula, the Shu’aiba Formation is one of three Cretaceous carbonate formations in which rudist bivalves are an important component. The favourable hydrocarbon reservoir properties of these carbonates are primarily attributed to the presence of the rudists and their associated debris, which accumulated along the margins of an intra-shelf basin. The rudist banks caused differentiation of an earlier carbonate platform into lagoon, back-bank, bank, fore-bank and open marine environments. Understanding of the orientation of these banks has been significantly assisted by micropalaeontological analysis of the rudist-associated sediment, but may be additionally enhanced by the study of Recent large bivalves, such as the ‘fan mussel’ Pinna spp. The depositional geometries of the rudist-dominated facies of the Shu’aiba Formation may be better understood by studying the Great Pearl Bank Barrier, located on the southern flank of the Arabian Gulf, as this may present a Recent analogue for variations in sedimentation and bioclast distribution. The Great Pearl Bank Barrier complex includes a submarine ridge that extends for approximately 200 kilometers between the Qatar Peninsula and Abu Dhabi, and lies in water depths of less than 8 meters, together with a deep lagoon and barrier flank facies. The submarine barrier complex and the back island lagoons consist primarily of bivalve shells, sands and mud, in which are embedded locally dense populations of the large bivalve species Pinna bicolor Gmelin and P.mururicata (Linnaeus). These forms may serve as Recent counterparts for the extinct Aptian constratal elevator rudists, such as Glossomyophorus costatus Masse, Skelton and Sliskovic, with a form that resembles Pachytraga sp., and Agriopleura blumenbachi that characterise the back-barrier and lagoonal facies, respectively, of the Shu’aiba Formation in the region. The oysters that have colonised the barrier crest have a clinging habit and may occupy a niche that equates with the Aptian recumbent rudist Offneria murgensis.


1967 ◽  
Vol 72 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Alexander Malahoff ◽  
Floyd McCoy

Sign in / Sign up

Export Citation Format

Share Document