Installations for oil supply systems for oil burners

2000 ◽  
Keyword(s):  
1983 ◽  
Vol 105 (4) ◽  
pp. 559-567 ◽  
Author(s):  
A. Ronen ◽  
S. Malkin

A test system is described for investigating friction and wear of hydrodynamic bearings under cyclical dynamic loading conditions with contaminant abrasive particles in the oil supply. Dynamic loading on the test bearing is synchronized with the shaft rotation, so that the oil film thickness history can be determined from the measured shaft orbit for any point on the shaft and liner periphery. Either clean or contaminated oil can be supplied to the test bearing from two separate oil supply systems. Experimental results obtained for six shaft/liner bearing material combinations were similar to those previously obtained for static loading. The friction and wear behavior were found to depend on the relative hardnesses of the shaft and liner. A larger shaft-to-liner hardness ratio generally resulted in more shaft wear and less liner wear. This is attributed to an increased tendency for abrasive particles to partially embed in the liner and cut the shaft when the shaft is harder and/or the liner is softer. With partial embedding, high bearing friction indicative of continuing abrasion persists after changing from contaminated to clean oil.


Author(s):  
Y.N. Rybakov ◽  
◽  
V.E. Danilov ◽  
I.V. Danilov ◽  
◽  
...  

The problem of losses of oil products from leaks during their storage and transportation at oil supply facilities is considered. The influence of oil product leaks on the environmental situation around oil depots and gas stations is shown. A detailed overview of existing methods and tools for detecting leaks of petroleum products from storage facilities is presented. The evaluation of their effectiveness. Two methods for detecting oil leaks and devices based on them are proposed. The first device monitors the movement of liquid in the tank, the second-detects petroleum products in wastewater. The problem of recovery of petroleum vapors and environmental pollution from the release of vapors of light fractions into the atmosphere is also considered. An overview of existing methods and means of recovery of petroleum vapors is presented. Two methods and devices for capturing oil vapors and returning them to the reservoir are proposed, based on different principles: vapor absorption in the cooled oil product and vapor recovery on the principle of the Carnot cycle. It is shown that these devices can provide effective detection of oil leaks and recovery of their vapors, as well as improve the effectiveness of environmental protection at modern gas stations and tank farms.


2019 ◽  
Vol 2 (3) ◽  
pp. 164-169
Author(s):  
Mohammed Faza ◽  
Maulahikmah Galinium ◽  
Matthias Guenther

An energy supply system consists of a system of power plants and transmission anddistribution systems that supply electrical energy. The present project is limited to the modellingof the generation system. Its objective is the design and implementation of a web-basedapplication for simulating energy supply systems using the Laravel framework. The projectfocuses on six modules representing geothermal energy, solar energy, biopower, hydropower,storage, and fossil-based energy that are allocated to satisfy a given power demand. It isexecuted as a time series modelling for an exemplary year with hourly resolution. Thedevelopment of the software is divided into four steps, which are the definition of the userrequirements, the system design (activity, use case, system architecture, and ERD), the softwaredevelopment, and the software testing (unit testing, functionality testing, validity testing, anduser acceptance testing). The software is successfully implemented. All the features of thesoftware work as intended. Also, the software goes through validity testing using three differentinput data, to make sure the software is accurate. The result of the testing is 100% accuracy withrespect to the underlying model that was implemented in an excel calculation.


2017 ◽  
Vol 4 (1) ◽  
pp. 41-52
Author(s):  
Dedy Loebis

This paper presents the results of work undertaken to develop and test contrasting data analysis approaches for the detection of bursts/leaks and other anomalies within wate r supply systems at district meter area (DMA)level. This was conducted for Yorkshire Water (YW) sample data sets from the Harrogate and Dales (H&D), Yorkshire, United Kingdom water supply network as part of Project NEPTUNE EP/E003192/1 ). A data analysissystem based on Kalman filtering and statistical approach has been developed. The system has been applied to the analysis of flow and pressure data. The system was proved for one dataset case and have shown the ability to detect anomalies in flow and pres sure patterns, by correlating with other information. It will be shown that the Kalman/statistical approach is a promising approach at detecting subtle changes and higher frequency features, it has the potential to identify precursor features and smaller l eaks and hence could be useful for monitoring the development of leaks, prior to a large volume burst event.


Sign in / Sign up

Export Citation Format

Share Document