Challenges facing the development of a genetic improvement program for dairy cattle in Myanmar

1976 ◽  
Vol 27 (2) ◽  
pp. 309 ◽  
Author(s):  
IR Franklin ◽  
RH Hayman ◽  
RO Hewetson

A dairy improvement program designed to develop a breed of cattle adapted to tropical environments is described. Each year young crossbred (Bos indicus x Bos taurus) bulls are screened for heat tolerance and tick resistance, and then progeny-tested in the herds of cooperating dairy farmers. Estimates of phenotypic and genetic means, variances and correlations are presented for production of milk and milk components, and the rate of genetic improvement is discussed. In particular the heritability of milk yield in the crossbred progeny is 0.27, and the theoretical rate of improvement is 2.6% per year. ____________________ *Part III, Aust. J. Agric. Res., 25: 1023 (1974).


2003 ◽  
Vol 83 (3) ◽  
pp. 403-407 ◽  
Author(s):  
D. Bousquet ◽  
E. B. Burnside ◽  
B. J. Van Doormaal

The objective of this paper is to review the utilization and outcome of reproductive biotechnologies in dairy cattle. Embryo transfer and IVF have their respective limits that influence their impact on a genetic improvement program. Embryo transfer is efficient and profitable in an artificial insemination breeding and selection program and IVF has great potential. Development of markers highly correlated with various economic traits will progressively be added to the present schemes to make them even more powerful. Key words: Reproductive technologies, embryo transfer, IVF, dairy cows, genetic


Aquaculture ◽  
2021 ◽  
pp. 736715
Author(s):  
Matthew G. Hamilton ◽  
Wagdy Mekkawy ◽  
Benoy K. Barman ◽  
Md. Badrul Alam ◽  
Manjurul Karim ◽  
...  

2021 ◽  
Vol 58 (2) ◽  
pp. 279-286
Author(s):  
Sandhani Saikia ◽  
Pratap Jyoti Handique ◽  
Mahendra K Modi

Genetic diversity is the source of novel allelic combinations that can be efficiently utilized in any crop improvement program. To facilitate future crop improvement programs in rice, a study was designed to identify the underlying genetic variations in the Sali rice germplasms of Assam using SSR markers. The 129 SSR markers that were used in the study amplified a total of 765 fragments with an average of 5.93 alleles per locus. The Shannon's Information Index was found to be in the range from 0.533 to 1.786. The Polymorphism Information Content (PIC) fell into the range from 0.304 to 0.691 with a mean value of 0.55. The overall FST value was found to be 0.519 that indicated the presence of genetic differentiation amongst the genotypes used in the study. The Sali population was divided into two clusters. The information obtained from the present study will facilitate the genetic improvement of Sali rice cultivars.


1980 ◽  
Vol 60 (2) ◽  
pp. 253-264 ◽  
Author(s):  
A. J. McALLISTER

In the last decade the dairy cattle population has declined to a level of 1.9 million cows in 1978 with about 56% of these cows bred AI and nearly 20% of the population enrolled in a supervised milk recording program. The decline in cow numbers has been accompanied by an increase in herd size and production per cow. The current breeding program of the dairy industry is a composite of breeding decisions made by AI organizations, breeders who produce young bulls for sampling and all dairymen who choose the sires and dams of their replacement heifers. Estimates of genetic trend from 1958–1975 for milk production in the national milk recorded herd range from 21 to 55 kg per year for the four dairy breeds with Holsteins being 41 kg per year. Both differential use of superior proven sires and improved genetic merit of young bulls entering AI studs contribute to this genetic improvement. Various national production and marketing alternatives were examined. Selection is a major breeding tool in establishing a breeding program to meet national production requirements for milk and milk products once the selection goal is defined. AI and young sire sampling programs will continue to be the primary vehicle for genetic improvement through selection regardless of the selection goal. The current resources of milk-recorded cows bred AI is not being fully utilized to achieve maximum genetic progress possible from young sire sampling indicate that the number of young bulls sampled annually in the Holstein breed could be tripled with the existing milk-recorded and AI bred dairy cow population. Expanded milk recording and AI breeding levels could increase the potential for even further genetic improvement. The potential impact of selection for other traits, crossbreeding and the use of embryo transfer of future breeding programs is highlighted.


2021 ◽  
Author(s):  
Zeleke Tesema ◽  
Damitie Kebede

Analysis and evaluation of the previous genetic improvement attempts and their fruition are paramount to make the right decision in the future. Hence, this paper reviews the status of goat genetic improvement programs through quantitative evidence and elucidates how it can be implemented in the future through an intensive literature review. Goat genetic improvement through crossbreeding was initiated early in 1975. However, most crossbreeding programs have lacked analysis of the existing resources and infrastructure and also lack long-term strategies. As a result, crossbreeding program was discontinued without significant contribution due to incompatibility of the exotic genotype with low-input production systems. On the other hand, the moderate to high genetic variation within a population open the window for within-breed selection. Accordingly, a well-designed within-breed selection program was initiated late in 2013 for specified breeds. Currently, governmental and non-governmental institutions plan to scale up community-based within-breed selection program. Besides, the efficiency of assisted reproductive technologies in goat genetic improvement was evaluated by ICARDA and reported a moderate achievement. However, the application of molecular technologies in Ethiopia is only limited to diversity studies. Nevertheless, there is an opportunity to use molecular technologies to enhance the genetic progress of a genetic improvement program. In conclusion, the expected benefits from crossbreeding program were not obtained and will not be obtained under the existing low input-production system. Therefore, a within-breed selection program would be an ideal option for the existing low-input production system if integrated with assisted reproductive and molecular technologies.


Sign in / Sign up

Export Citation Format

Share Document