Faculty Opinions recommendation of Regulation of Fas-associated death domain interactions by the death effector domain identified by a modified reverse two-hybrid screen.

Author(s):  
Stephen Sprang
2003 ◽  
Vol 14 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Jacqueline Thorburn ◽  
Laura M. Bender ◽  
Michael J. Morgan ◽  
Andrew Thorburn

The adapter protein FADD consists of two protein interaction domains: a death domain and a death effector domain. The death domain binds to activated death receptors such as Fas, whereas the death effector domain binds to procaspase 8. An FADD mutant, which consists of only the death domain (FADD-DD), inhibits death receptor–induced apoptosis. FADD-DD can also activate a mechanistically distinct, cell type–specific apoptotic pathway that kills normal but not cancerous prostate epithelial cells. Here, we show that this apoptosis occurs through activation of caspases 9, 3, 6, and 7 and a serine protease. Simultaneous inhibition of caspases and serine proteases prevents FADD-DD–induced death. Inhibition of either pathway alone does not prevent cell death but does affect the morphology of the dying cells. Normal prostate epithelial cells require both the caspase and serine protease inhibitors to efficiently prevent apoptosis in response to TRAIL. In contrast, the serine protease inhibitor does not affect TRAIL-induced death in prostate tumor cells suggesting that the FADD-DD–dependent pathway can be activated by TRAIL. This apoptosis pathway is activated in a cell type–specific manner that is defective in cancer cells, suggesting that this pathway may be targeted during cancer development.


2019 ◽  
Vol 20 (13) ◽  
pp. 3335
Author(s):  
Sergio L. Crespo-Flores ◽  
Andres Cabezas ◽  
Sherouk Hassan ◽  
Yufeng Wei

Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) exerts its regulatory roles on several critical cellular pathways through protein–protein interactions depending on its phosphorylation states. It can either inhibit the extracellular signal-regulated kinase (ERK) activities when it is dephosphorylated or block the assembly of death-inducing signaling complex (DISC) and the subsequent activation of apoptotic initiator, caspase-8, when it is phosphorylated. Due to the important roles of PEA-15 in regulating these pathways that lead to opposite cellular outcomes (cell proliferation vs. cell death), we proposed a phosphostasis (phosphorylation homeostasis) model, in which the phosphorylation states of the protein are vigorously controlled and regulated to maintain a delicate balance. The phosphostasis gives rise to the protective cellular functions of PEA-15 to preserve optimum cellular conditions. In this article, using advanced multidimensional nuclear magnetic resonance (NMR) techniques combined with a novel chemical shift (CS)-Rosetta algorithm for de novo protein structural determination, we report a novel conformation of PEA-15 death-effector domain (DED) upon interacting with ERK2. This new conformation is modulated by the irregularly structured C-terminal tail when it first recognizes and binds to ERK2 at the d-peptide recruitment site (DRS) in an allosteric manner, and is facilitated by the rearrangement of the surface electrostatic and hydrogen-bonding interactions on the DED. In this ERK2-bound conformation, three of the six helices (α2, α3, and α4) comprising the DED reorient substantially in comparison to the free-form structure, exposing key residues on the other three helices that directly interact with ERK2 at the DEF-docking site (docking site for ERK, FxF) and the activation loop. Additionally, we provide evidence that the phosphorylation of the C-terminal tail leads to a distinct conformation of DED, allowing efficient interactions with Fas-associated death domain (FADD) protein at the DISC. Our results substantiate the allosteric regulatory roles of the C-terminal tail in modulating DED conformation and facilitating protein–protein interactions of PEA-15.


2005 ◽  
Vol 387 (2) ◽  
pp. 315-324 ◽  
Author(s):  
Runa SUR ◽  
Joe W. RAMOS

The ERK (extracellular-signal regulated-kinase)/MAPK (mitogen-activated protein kinase) pathway can regulate transcription, proliferation, migration and apoptosis. The small DED (death-effector domain) protein PEA-15 (phosphoprotein enriched in astrocytes-15) binds ERK and targets it to the cytoplasm. Other DED-containing proteins including cFLIP and DEDD can also regulate signal transduction events and transcription in addition to apoptosis. In the present study, we report the identification of a novel DED-containing protein called Vanishin. The amino acid sequence of Vanishin is closest in similarly to PEA-15 (61% identical). Vanishin mRNA is expressed in several mouse tissues and in both mouse and human cell lines. Interestingly, Vanishin is regulated by ubiquitinylation and subsequent degradation by the 26 S proteasome. The ubiquitinylation is complex and occurs at both the internal lysine residues and the N-terminus. We further show that Vanishin binds ERK/MAPK but not the DED proteins Fas-associated death domain, caspase 8 or PEA-15. Vanishin is present in both the nucleus and Golgi on overexpression and forces increased ERK accumulation in the nucleus in the absence of ERK stimulation. Moreover, Vanishin expression inhibits ERK activation and ERK-dependent transcription in cells, but does not alter MAPK/ERK activity. Therefore Vanishin is a novel regulator of ERK that is controlled by ubiquitinylation.


Sign in / Sign up

Export Citation Format

Share Document