Faculty Opinions recommendation of T-cell engagement of dendritic cells rapidly rearranges MHC class II transport.

Author(s):  
Peter Jensen
Keyword(s):  
T Cell ◽  
2012 ◽  
Vol 59 (1,2) ◽  
pp. 95-101 ◽  
Author(s):  
Tohru Sakai ◽  
Emi Shuto ◽  
Tomoyo Taki ◽  
Honami Imamura ◽  
Miku Kioka ◽  
...  

1993 ◽  
Vol 178 (2) ◽  
pp. 633-642 ◽  
Author(s):  
N Bhardwaj ◽  
J W Young ◽  
A J Nisanian ◽  
J Baggers ◽  
R M Steinman

Dendritic cells are potent antigen-presenting cells for several primary immune responses and therefore provide an opportunity for evaluating the amounts of cell-associated antigens that are required for inducing T cell-mediated immunity. Because dendritic cells express very high levels of major histocompatibility complex (MHC) class II products, it has been assumed that high levels of ligands bound to MHC products ("signal one") are needed to stimulate quiescent T cells. Here we describe quantitative aspects underlying the stimulation of human blood T cells by a bacterial superantigen, staphylococcal enterotoxin A (SEA). The advantages of superantigens for quantitative studies of signal one are that these ligands: (a) engage MHC class II and the T cell receptor but do not require processing; (b) are efficiently presented to large numbers of quiescent T cells; and (c) can be pulsed onto dendritic cells before their application to T cells. Thus one can relate amounts of dendritic cell-associated SEA to subsequent lymphocyte stimulation. Using radioiodinated SEA, we noted that dendritic cells can bind 30-200 times more superantigen than B cells and monocytes. Nevertheless, this high SEA binding does not underlie the strong potency of dendritic cells to present antigen to T cells. Dendritic cells can sensitize quiescent T cells, isolated using monoclonals to appropriate CD45R epitopes, after a pulse of SEA that occupies a maximum of 0.1% of surface MHC class II molecules. This corresponds to an average of 2,000 molecules per dendritic cell. At these low doses of bound SEA, monoclonal antibodies to CD3, CD4, and CD28 almost completely block T cell proliferation. In addition to suggesting new roles for MHC class II on dendritic cells, especially the capture and retention of ligands at low external concentrations, the data reveal that primary T cells can generate a response to exceptionally low levels of signal one as long as these are delivered on dendritic cells.


Nature ◽  
2002 ◽  
Vol 418 (6901) ◽  
pp. 983-988 ◽  
Author(s):  
Marianne Boes ◽  
Jan Cerny ◽  
Ramiro Massol ◽  
Marjolein Op den Brouw ◽  
Tom Kirchhausen ◽  
...  
Keyword(s):  
T Cell ◽  

2008 ◽  
Vol 181 (1) ◽  
pp. 165-173 ◽  
Author(s):  
Thomas Fehr ◽  
Fabienne Haspot ◽  
Joshua Mollov ◽  
Meredith Chittenden ◽  
Timothy Hogan ◽  
...  

2007 ◽  
Vol 104 (17) ◽  
pp. 7181-7186 ◽  
Author(s):  
U. B. Fischer ◽  
E. L. Jacovetty ◽  
R. B. Medeiros ◽  
B. D. Goudy ◽  
T. Zell ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 216-223 ◽  
Author(s):  
Elodie Segura ◽  
Carole Nicco ◽  
Bérangère Lombard ◽  
Philippe Véron ◽  
Graça Raposo ◽  
...  

Exosomes are secreted vesicles formed in late endocytic compartments. Immature dendritic cells (DCs) secrete exosomes, which transfer functional major histocompatibility complex (MHC)–peptide complexes to other DCs. Since immature and mature DCs induce different functional T-cell responses (ie, tolerance versus priming), we asked whether DC maturation also influenced the priming abilities of their exosomes. We show that exosomes secreted by lipopolysaccharide (LPS)–treated mature DCs are 50- to 100-fold more potent to induce antigen-specific T-cell activation in vitro than exosomes from immature DCs. In vitro, exosomes from mature DCs transfer to B lymphocytes the ability to prime naive T cells. In vivo, only mature exosomes trigger effector T-cell responses, leading to fast skin graft rejection. Proteomic and biochemical analyses revealed that mature exosomes are enriched in MHC class II, B7.2, intercellular adhesion molecule 1 (ICAM-1), and bear little milk-fat globule–epidermal growth factor–factor VIII (MFG-E8) as compared with immature exosomes. Functional analysis using DC-derived exosomes from knock-out mice showed that MHC class II and ICAM-1 are required for mature exosomes to prime naive T cells, whereas B7.2 and MFG-E8 are dispensable. Therefore, changes in protein composition and priming abilities of exosomes reflect the maturation signals received by DCs.


1993 ◽  
Vol 178 (6) ◽  
pp. 1893-1901 ◽  
Author(s):  
P Paglia ◽  
G Girolomoni ◽  
F Robbiati ◽  
F Granucci ◽  
P Ricciardi-Castagnoli

Dendritic cells (DC) can provide all the known costimulatory signals required for activation of unprimed T cells and are the most efficient and perhaps the critical antigen presenting cells in the induction of primary T cell-mediated immune responses. It is now shown that mouse cell lines with many of the features of DC can be generated using the MIB phi 2-N11 retroviral vector transducing a novel envAKR-mycMH2 fusion gene. The immortalized dendritic cell line (CB1) displays most of the morphologic, immunophenotypic, and functional attributes of DC, including constitutive expression of major histocompatibility complex (MHC) class II molecules, costimulatory molecules B7/BB1, heat stable antigen, intracellular adhesion molecule 1, and efficient antigen-presenting ability. Granulocyte/macrophage colony-stimulating factor (GM-CSF) proved to be effective in increasing MHC class II molecule expression and in enhancing presentation of native protein antigens. In comparison with macrophages, CB1 dendritic cells did not exhibit phagocytic and chemotactic activity in response to various stimuli and lipopolysaccharide activation was ineffective in inducing tumor necrosis factor alpha or interleukin 1 beta production. CB1 cells, pulsed with haptens in vitro and injected into naive mice were able to induce delayed-type hypersensitivity responses, further increased with pretreatment with GM-CSF, indicating that these cells may represent an immature, rather than a mature DC. The ability of CB1 to prime T cells in vivo could provide a tool to design novel immunization strategies.


1997 ◽  
Vol 186 (5) ◽  
pp. 673-682 ◽  
Author(s):  
Guangming Zhong ◽  
Caetano Reis e Sousa ◽  
Ronald N. Germain

Intravenous (i.v.) injection of high amounts of soluble proteins often results in the induction of antigen-specific tolerance or deviation to helper rather than inflammatory T cell immunity. It has been proposed that this outcome may be due to antigen presentation to T cells by a large cohort of poorly costimulatory or IL-12–deficient resting B cells lacking specific immunoglobulin receptors for the protein. However, previous studies using T cell activation in vitro to assess antigen display have failed to support this idea, showing evidence of specific peptide–major histocompatibility complex (MHC) class II ligand only on purified dendritic cells (DC) or antigen-specific B cells isolated from protein injected mice. Here we reexamine this question using a recently derived monoclonal antibody specific for the T cell receptor (TCR) ligand formed by the association of the 46-61 determinant of hen egg lysozyme (HEL) and the mouse MHC class II molecule I-Ak. In striking contrast to conclusions drawn from indirect T cell activation studies, this direct method of TCR ligand analysis shows that i.v. administration of HEL protein results in nearly all B cells in lymphoid tissues having substantial levels of HEL 46-61–Ak complexes on their surface. DC readily isolated from spleen also display this TCR ligand on their surface. Although the absolute number of displayed ligands is greater on such DC, the relative specific ligand expression compared to total MHC class II levels is similar or greater on B cells. These results demonstrate that in the absence of activating stimuli, both lymphoid DC and antigen-unspecific B cells present to a similar extent class II–associated peptides derived from soluble proteins in extracellular fluid. The numerical advantage of the TCR ligand–bearing B cells may permit them to interact first or more often with naive antigen-specific T cells, contributing to the induction of high-dose T cell tolerance or immune deviation.


Sign in / Sign up

Export Citation Format

Share Document