Faculty Opinions recommendation of Telomere maintenance requires the RAD51D recombination/repair protein.

Author(s):  
Titia De Lange
Cell ◽  
2004 ◽  
Vol 117 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Madalena Tarsounas ◽  
Purificacı́on Muñoz ◽  
Andreas Claas ◽  
Phillip G Smiraldo ◽  
Douglas L Pittman ◽  
...  

2007 ◽  
Vol 18 (6) ◽  
pp. 2378-2387 ◽  
Author(s):  
Tatsuya Kibe ◽  
Yuuki Ono ◽  
Koichiro Sato ◽  
Masaru Ueno

The telomere complex must allow nucleases and helicases to process chromosome ends to make them substrates for telomerase, while preventing these same activities from disrupting chromosome end-protection. Replication protein A (RPA) binds to single-stranded DNA and is required for DNA replication, recombination, repair, and telomere maintenance. In fission yeast, the telomere binding protein Taz1 protects telomeres and negatively regulates telomerase. Here, we show that taz1-d rad11-D223Y double mutants lose their telomeric DNA, indicating that RPA (Rad11) and Taz1 are synergistically required to prevent telomere loss. Telomere loss in the taz1-d rad11-D223Y double mutants was suppressed by additional mutation of the helicase domain in a RecQ helicase (Rqh1), or by overexpression of Pot1, a single-strand telomere binding protein that is essential for protection of chromosome ends. From our results, we propose that in the absence of Taz1 and functional RPA, Pot1 cannot function properly and the helicase activity of Rqh1 promotes telomere loss. Our results suggest that controlling the activity of Rqh1 at telomeres is critical for the prevention of genomic instability.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Haifeng Fu ◽  
Weiyu Zhang ◽  
Niannian Li ◽  
Jiao Yang ◽  
Xiaoying Ye ◽  
...  

Abstract Background Naïve and primed pluripotent stem cells (PSCs) represent two different pluripotent states. Primed PSCs following in vitro culture exhibit lower developmental potency as evidenced by failure in germline chimera assays, unlike mouse naïve PSCs. However, the molecular mechanisms underlying the lower developmental competency of primed PSCs remain elusive. Results We examine the regulation of telomere maintenance, retrotransposon activity, and genomic stability of primed PSCs and compare them with naïve PSCs. Surprisingly, primed PSCs only minimally maintain telomeres and show fragile telomeres, associated with declined DNA recombination and repair activity, in contrast to naïve PSCs that robustly elongate telomeres. Also, we identify LINE1 family integrant L1Md_T as naïve-specific retrotransposon and ERVK family integrant IAPEz to define primed PSCs, and their transcription is differentially regulated by heterochromatic histones and Dnmt3b. Notably, genomic instability of primed PSCs is increased, in association with aberrant retrotransposon activity. Conclusions Our data suggest that fragile telomere, retrotransposon-associated genomic instability, and declined DNA recombination repair, together with reduced function of cell cycle and mitochondria, increased apoptosis, and differentiation properties may link to compromised developmental potency of primed PSCs, noticeably distinguishable from naïve PSCs.


2018 ◽  
Vol 24 (3) ◽  
pp. 593-600 ◽  
Author(s):  
Paula M De Angelis ◽  
Aasa R Schjølberg ◽  
Juliana B Hughes ◽  
Henrik S Huitfeldt ◽  
Solveig Norheim Andersen ◽  
...  

2006 ◽  
Vol 281 (17) ◽  
pp. 11577-11585 ◽  
Author(s):  
Ryo Takeuchi ◽  
Tatsushi Ruike ◽  
Ryo-ichi Nakamura ◽  
Kaori Shimanouchi ◽  
Yoshihiro Kanai ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
I Nengah Kerta Besung ◽  
I Gusti Ketut Suarjana ◽  
Kadek Karang Agustina ◽  
Ida Bagus Oka Winaya ◽  
Hamong Soeharsono ◽  
...  

Abstract Objective Streptococcus suis (S. suis) is a causative agent for various syndromes in pigs. It can be transmitted to humans with typical symptoms of meningitis and death. Although human infections have been confirmed at Bali Referral Hospital, Indonesia, since 2014, the bacteria have not been isolated from pigs. Here, we provide confirmation of the presence of the bacteria in sick pigs in the province. Results Streptococcus suis was confirmed in 8 of 30 cases. The final confirmation was made using PCR and sequencing of the glutamate dehydrogenase (GDH) and recombination/repair protein (recN) gene fragments. Upon PCR serotyping, two were confirmed to be serotype 2 or 1/2. Prominent histopathological lesions of confirmed cases were meningitis, endocarditis, pericarditis, bronchopneumonia, enteritis and glomerulonephritis. The dominant inflammatory cells were neutrophils and macrophages. Further research is needed to understand the risk factors for human infection. Community awareness on the risk of contracting S. suis and vaccine development are needed to prevent human infections.


2020 ◽  
Vol 477 (1) ◽  
pp. 173-189 ◽  
Author(s):  
Marco Pedretti ◽  
Carolina Conter ◽  
Paola Dominici ◽  
Alessandra Astegno

Arabidopsis centrin 2, also known as calmodulin-like protein 19 (CML19), is a member of the EF-hand superfamily of calcium (Ca2+)-binding proteins. In addition to the notion that CML19 interacts with the nucleotide excision repair protein RAD4, CML19 was suggested to be a component of the transcription export complex 2 (TREX-2) by interacting with SAC3B. However, the molecular determinants of this interaction have remained largely unknown. Herein, we identified a CML19-binding site within the C-terminus of SAC3B and characterized the binding properties of the corresponding 26-residue peptide (SAC3Bp), which exhibits the hydrophobic triad centrin-binding motif in a reversed orientation (I8W4W1). Using a combination of spectroscopic and calorimetric experiments, we shed light on the SAC3Bp–CML19 complex structure in solution. We demonstrated that the peptide interacts not only with Ca2+-saturated CML19, but also with apo-CML19 to form a protein–peptide complex with a 1 : 1 stoichiometry. Both interactions involve hydrophobic and electrostatic contributions and include the burial of Trp residues of SAC3Bp. However, the peptide likely assumes different conformations upon binding to apo-CML19 or Ca2+-CML19. Importantly, the peptide dramatically increases the affinity for Ca2+ of CML19, especially of the C-lobe, suggesting that in vivo the protein would be Ca2+-saturated and bound to SAC3B even at resting Ca2+-levels. Our results, providing direct evidence that Arabidopsis SAC3B is a CML19 target and proposing that CML19 can bind to SAC3B through its C-lobe independent of a Ca2+ stimulus, support a functional role for these proteins in TREX-2 complex and mRNA export.


Sign in / Sign up

Export Citation Format

Share Document