Faculty Opinions recommendation of Naturalistic experience transforms sensory maps in the adult cortex of caged animals.

Author(s):  
Kathleen Rockland
Keyword(s):  
2012 ◽  
Vol 30 (8) ◽  
pp. 638-638
Author(s):  
Stavroula Assimacopoulos ◽  
Tina Kao ◽  
Naoum P. Issa ◽  
Elizabeth A. Grove
Keyword(s):  

2008 ◽  
Vol 99 (5) ◽  
pp. 2641-2655 ◽  
Author(s):  
W. Hamish Mehaffey ◽  
Leonard Maler ◽  
Ray W. Turner

The tuning of neuronal responsiveness to specific stimulus frequencies is an important computation across many sensory modalities. The weakly electric fish Apteronotus leptorhynchus detects amplitude modulations of a self-generated quasi-sinusoidal electric organ discharge to sense its environment. These fish have to parse a complicated electrosensory environment with a wide range of possible frequency content. One solution has been to create multiple representations of the sensory input across distinct maps in the electrosensory lateral line lobe (ELL) that participate in distinct behavioral functions. E- and I-type pyramidal cells in the ELL that process sensory input further exhibit a preferred range of stimulus frequencies in relation to the different behaviors and sensory maps. We tested the hypothesis that variations in the intrinsic spiking mechanism of E- and I-type pyramidal cells contribute to map-specific frequency tuning. We find that E-cells exhibit a systematic change in their intrinsic spike characteristics and frequency tuning across sensory maps, whereas I-cells are constant in both spike characteristics and frequency tuning. As frequency tuning becomes more high-pass in E-cells, the refractory variables of spike half-width and afterhyperpolarization magnitude increase, spike threshold increases, adaptation becomes faster, and the gain of the spiking response decreases. These findings indicate that frequency tuning across sensory maps in the ELL is supported by differences in the intrinsic spike characteristics of pyramidal cells, revealing a link between cellular biophysical properties and signal processing in sensory maps with defined behavioral roles.


2007 ◽  
Vol 7 ◽  
pp. 1922-1929 ◽  
Author(s):  
Tyge Dahl Hermansen ◽  
Søren Ventegodt ◽  
Isack Kandel

The structure of human consciousness is thought to be closely connected to the structure of cerebral cortex. One of the most appreciated concepts in this regard is the Szanthagothei model of a modular building of neo-cortex. The modules are believed to organize brain activity pretty much like a computer. We looked at examples in the literature and argue that there is no significant evidence that supports Szanthagothei's model. We discuss the use of the limited genetic information, the corticocortical afferents termination and the columns in primary sensory cortex as arguments for the existence of the cortex-module. Further, we discuss the results of experiments with Luminization Microscopy (LM) colouration of myalinized fibres, in which vertical bundles of afferent/efferent fibres that could support the cortex module are identified. We conclude that sensory maps seem not to be an expression for simple specific connectivity, but rather to be functional defined. We also conclude that evidence for the existence of the postulated module or column does not exist in the discussed material. This opens up for an important discussion of the brain as functionally directed by biological information (information-directed self-organisation), and for consciousness being closely linked to the structure of the universe at large. Consciousness is thus not a local phenomena limited to the brain, but a much more global phenomena connected to the wholeness of the world.


2019 ◽  
Vol 116 (49) ◽  
pp. 24861-24871 ◽  
Author(s):  
Michael J. Arcaro ◽  
Peter F. Schade ◽  
Margaret S. Livingstone

Topographic sensory maps are a prominent feature of the adult primate brain. Here, we asked whether topographic representations of the body are present at birth. Using functional MRI (fMRI), we find that the newborn somatomotor system, spanning frontoparietal cortex and subcortex, comprises multiple topographic representations of the body. The organization of these large-scale body maps was indistinguishable from those in older monkeys. Finer-scale differentiation of individual fingers increased over the first 2 y, suggesting that topographic representations are refined during early development. Last, we found that somatomotor representations were unchanged in 2 visually impaired monkeys who relied on touch for interacting with their environment, demonstrating that massive shifts in early sensory experience in an otherwise anatomically intact brain are insufficient for driving cross-modal plasticity. We propose that a topographic scaffolding is present at birth that both directs and constrains experience-driven modifications throughout somatosensory and motor systems.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Lucilla Cardinali ◽  
Andrea Serino ◽  
Monica Gori

Abstract Cortical body size representations are distorted in the adult, from low-level motor and sensory maps to higher levels multisensory and cognitive representations. Little is known about how such representations are built and evolve during infancy and childhood. Here we investigated how hand size is represented in typically developing children aged 6 to 10. Participants were asked to estimate their hand size using two different sensory modalities (visual or haptic). We found a distortion (underestimation) already present in the youngest children. Crucially, such distortion increases with age and regardless of the sensory modality used to access the representation. Finally, underestimation is specific for the body as no bias was found for object estimation. This study suggests that the brain does not keep up with the natural body growth. However, since motor behavior nor perception were impaired, the distortion seems functional and/or compensated for, for proper interaction with the external environment.


1995 ◽  
Vol 10 (1-2) ◽  
pp. 203-218 ◽  
Author(s):  
Fabrizio A.M. Davide ◽  
Corrado Di Natale ◽  
Arnaldo D'Amico
Keyword(s):  

2012 ◽  
Vol 108 (9) ◽  
pp. 2343-2351 ◽  
Author(s):  
Rishikesh Narayanan ◽  
Daniel Johnston

The presence and plasticity of dendritic ion channels are well established. However, the literature is divided on what specific roles these dendritic ion channels play in neuronal information processing, and there is no consensus on why neuronal dendrites should express diverse ion channels with different expression profiles. In this review, we present a case for viewing dendritic information processing through the lens of the sensory map literature, where functional gradients within neurons are considered as maps on the neuronal topograph. Under such a framework, drawing analogies from the sensory map literature, we postulate that the formation of intraneuronal functional maps is driven by the twin objectives of efficiently encoding inputs that impinge along different dendritic locations and of retaining homeostasis in the face of changes that are required in the coding process. In arriving at this postulate, we relate intraneuronal map physiology to the vast literature on sensory maps and argue that such a metaphorical association provides a fresh conceptual framework for analyzing and understanding single-neuron information encoding. We also describe instances where the metaphor presents specific directions for research on intraneuronal maps, derived from analogous pursuits in the sensory map literature. We suggest that this perspective offers a thesis for why neurons should express and alter ion channels in their dendrites and provides a framework under which active dendrites could be related to neural coding, learning theory, and homeostasis.


Nature ◽  
1994 ◽  
Vol 368 (6472) ◽  
pp. 592-593 ◽  
Author(s):  
Tony T. Yang ◽  
C. Gallen ◽  
B. Schwartz ◽  
F. E. Bloom ◽  
V. S. Ramachandran ◽  
...  
Keyword(s):  

Science ◽  
2005 ◽  
Vol 310 (5749) ◽  
pp. 810-815 ◽  
Author(s):  
Daniel E. Feldman ◽  
Michael Brecht

Sensory maps in neocortex are adaptively altered to reflect recent experience and learning. In somatosensory cortex, distinct patterns of sensory use or disuse elicit multiple, functionally distinct forms of map plasticity. Diverse approaches—genetics, synaptic and in vivo physiology, optical imaging, and ultrastructural analysis—suggest a distributed model in which plasticity occurs at multiple sites in the cortical circuit with multiple cellular/synaptic mechanisms and multiple likely learning rules for plasticity. This view contrasts with the classical model in which the map plasticity reflects a single Hebbian process acting at a small set of cortical synapses.


Sign in / Sign up

Export Citation Format

Share Document