Faculty Opinions recommendation of Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection.

Author(s):  
Grant McFadden
2004 ◽  
Vol 199 (12) ◽  
pp. 1651-1658 ◽  
Author(s):  
Andrea K. Perry ◽  
Edward K. Chow ◽  
Julia B. Goodnough ◽  
Wen-Chen Yeh ◽  
Genhong Cheng

TANK-binding kinase-1 (TBK1) and the inducible IκB kinase (IKK-i) have been shown recently to activate interferon (IFN) regulatory factor-3 (IRF3), the primary transcription factor regulating induction of type I IFNs. Here, we have compared the role and specificity of TBK1 in the type I IFN response to lipopolysaccharide (LPS), polyI:C, and viral challenge by examining IRF3 nuclear translocation, signal transducer and activator of transcription 1 phosphorylation, and induction of IFN-regulated genes. The LPS and polyI:C-induced IFN responses were abolished and delayed, respectively, in macrophages from mice with a targeted disruption of the TBK1 gene. When challenged with Sendai virus, the IFN response was normal in TBK1−/− macrophages, but defective in TBK1−/− embryonic fibroblasts. Although both TBK1 and IKK-i are expressed in macrophages, only TBK1 but not IKK-i was detected in embryonic fibroblasts by Northern blotting analysis. Furthermore, the IFN response in TBK1−/− embryonic fibroblasts can be restored by reconstitution with wild-type IKK-i but not a mutant IKK-i lacking kinase activity. Thus, our studies suggest that TBK1 plays an important role in the Toll-like receptor–mediated IFN response and is redundant with IKK-i in the response of certain cell types to viral infection.


2012 ◽  
Vol 11 (6) ◽  
pp. 631-642 ◽  
Author(s):  
Yaming Wang ◽  
Melissa Swiecki ◽  
Marina Cella ◽  
Gottfried Alber ◽  
Robert D. Schreiber ◽  
...  

2021 ◽  
Author(s):  
Hongyun Wang ◽  
Lu Zhang ◽  
Cong Zeng ◽  
Jiangpeng Feng ◽  
Yu Zhou ◽  
...  

5-Methylcytosine (m5C) is a widespread post-transcriptional RNA modification and is reported to be involved in manifold cellular responses and biological processes through regulating RNA metabolism. However, its regulatory role in antiviral innate immunity has not yet been elucidated. Here, we report that NSUN2, a typical m5C methyltransferase, can negatively regulate type I interferon responses during viral infection. NSUN2 specifically mediates m5C methylation of IRF3 mRNA and accelerates its degradation, resulting in low levels of IRF3 and downstream IFN-β production. Knockout or knockdown of NSUN2 could enhance type I interferon responses and downstream ISG expression after viral infection in vitro. And in vivo, the antiviral innate responses is more dramatically enhanced in Nsun2+/− mice than in Nsun2+/+ mice. Four highly m5C methylated cytosines in IRF3 mRNA were identified, and their mutation could enhance the cellular IRF3 mRNA levels. Moreover, infection with Sendai virus (SeV), vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), Zika virus (ZIKV), or especially SARS-CoV-2 resulted in a reduction in endogenous levels of NSUN2. Together, our findings reveal that NSUN2 serves as a negative regulator of interferon response by accelerating the fast turnover of IRF3 mRNA, while endogenous NSUN2 levels decrease after viral infection to boost antiviral responses for the effective elimination of viruses. Our results suggest a paradigm of innate antiviral immune responses ingeniously involving NSUN2-mediated m5C modification.


2014 ◽  
Vol 73 (Suppl 1) ◽  
pp. A82.2-A82
Author(s):  
Chieko Kyogoku ◽  
Biljana Smiljanovic ◽  
Joachim R Grün ◽  
Ursula Schulte-Wrede ◽  
Tobias Alexander ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (4) ◽  
pp. e10250 ◽  
Author(s):  
Nicole Dietrich ◽  
Stefan Lienenklaus ◽  
Siegfried Weiss ◽  
Nelson O. Gekara

2020 ◽  
Vol 140 ◽  
pp. 103126
Author(s):  
Julie A. Potter ◽  
Mancy Tong ◽  
Paulomi Aldo ◽  
Ja Young Kwon ◽  
Mary Pitruzzello ◽  
...  

2016 ◽  
Vol 169 ◽  
pp. 121-127
Author(s):  
Camila de Lollo ◽  
Dewton de Moraes Vasconcelos ◽  
Luanda Mara da Silva Oliveira ◽  
Rosana Domingues ◽  
Gabriel Costa de Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document