Faculty Opinions recommendation of Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis.

Author(s):  
Keith Chater
2000 ◽  
Vol 2 (4) ◽  
pp. 237-243
Author(s):  
Piotr Widlak

The proliferation of eukaryotic cells is driven by a process called the cell cycle. Proper regulation of this process, leading to orderly execution of sequential steps within the cycle, ensures normal development and homeostasis of the organism. On the other hand, perturbations of the cell cycle are frequently attributed to cancer cells. Mechanisms that ensure the order and fidelity of events in the cell cycle are called checkpoints. The checkpoints induced by damaged DNA delay the cell cycle progression, providing more time for repair of lesion before DNA replication and segregation. The DNA damage-induced checkpoints can be recognized as signal transduction pathways that communicate information between DNA lesion and components of the cell cycle. Proteins involved in the cell cycle, as well as components of the signal transduction pathways communicating with the cell cycle, are frequently products of oncogenes and tumor suppressor genes. Malfunction of these genes plays a critical role in the development of human cancers. The key component in the checkpoint machinery is tumor suppressor gene p53, involved in either regulation of the cell cycle progression (e.g. Gl arrest of cells treated with DNA damaging factor) or activation of programmed cell death (apoptosis). It is postulated that p53 protein is activated by DNA damage detectors. One of the candidates for this role is DNA-dependent protein kinase (DNA-PK) which recognizes DNA strand breaks and phosphorylates p53 protein.


2001 ◽  
Vol 75 (9) ◽  
pp. 4247-4257 ◽  
Author(s):  
Michael Bouchard ◽  
Stavros Giannakopoulos ◽  
Edith H. Wang ◽  
Naoko Tanese ◽  
Robert J. Schneider

ABSTRACT Numerous studies have demonstrated that the hepatitis B virus HBx protein stimulates signal transduction pathways and may bind to certain transcription factors, particularly the cyclic AMP response element binding protein, CREB. HBx has also been shown to promote early cell cycle progression, possibly by functionally replacing the TATA-binding protein-associated factor 250 (TAFII250), a transcriptional coactivator, and/or by stimulating cytoplasmic signal transduction pathways. To understand the basis for early cell cycle progression mediated by HBx, we characterized the molecular mechanism by which HBx promotes deregulation of the G0 and G1 cell cycle checkpoints in growth-arrested cells. We demonstrate that TAFII250 is absolutely required for HBx activation of the cyclin A promoter and for promotion of early cell cycle transit from G0 through G1. Thus, HBx does not functionally replace TAFII250 for transcriptional activity or for cell cycle progression, in contrast to a previous report. Instead, HBx is shown to activate the cyclin A promoter, induce cyclin A–cyclin-dependent kinase 2 complexes, and promote cycling of growth-arrested cells into G1 through a pathway involving activation of Src tyrosine kinases. HBx stimulation of Src kinases and cyclin gene expression was found to force growth-arrested cells to transit through G1 but to stall at the junction with S phase, which may be important for viral replication.


1997 ◽  
Vol 110 (10) ◽  
pp. 1141-1145 ◽  
Author(s):  
W.F. Loomis ◽  
G. Shaulsky ◽  
N. Wang

Autophosphorylating histidine kinases are an ancient conserved family of enzymes that are found in eubacteria, archaebacteria and eukaryotes. They are activated by a wide range of extracellular signals and transfer phosphate moieties to aspartates found in response regulators. Recent studies have shown that such two-component signal transduction pathways mediate osmoregulation in Saccharomyces cerevisiae, Dictyostelium discoideum and Neurospora crassa. Moreover, they play pivotal roles in responses of Arabidopsis thaliana to ethylene and cytokinin. A transmembrane histidine kinase encoded by dhkA accumulates when Dictyostelium cells aggregate during development. Activation of DhkA results in the inhibition of its response regulator, RegA, which is a cAMP phosphodiesterase that regulates the cAMP dependent protein kinase PKA. When PKA is activated late in the differentiation of prespore cells, they encapsulate into spores. There is evidence that this two-component system participates in a feedback loop linked to PKA in prestalk cells such that the signal to initiate encapsulation is rapidly amplified. Such signal transduction pathways can be expected to be found in a variety of eukaryotic differentiations since they are rapidly reversible and can integrate disparate signals.


Sign in / Sign up

Export Citation Format

Share Document