Faculty Opinions recommendation of Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1.

Author(s):  
Eric V Stabb
2019 ◽  
Vol 13 (3) ◽  
pp. 1841-1846
Author(s):  
Sree Samanvitha K ◽  
Sanjay Kumar S ◽  
Antony V. Samrot ◽  
Raji P ◽  
Ponnaiah Paulraj ◽  
...  

2006 ◽  
Vol 73 (2) ◽  
pp. 650-654 ◽  
Author(s):  
Christophe Dubuis ◽  
Dieter Haas

ABSTRACT Signal extracts prepared from culture supernatants of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa PAO stimulated GacA-dependent expression of small RNAs and hence of antibiotic compounds in both hosts. Pseudomonas corrugata LMG2172 and P. fluorescens SBW25 also produced signal molecules stimulating GacA-controlled antibiotic synthesis in strain CHA0, illustrating a novel, N-acyl-homoserine lactone-independent type of interspecies communication.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Rebecca L. Scholz ◽  
E. Peter Greenberg

ABSTRACTMany proteobacteria utilize acyl-homoserine lactone quorum-sensing signals. At low population densities, cells produce a basal level of signal, and when sufficient signal has accumulated in the surrounding environment, it binds to its receptor, and quorum-sensing-dependent genes can be activated. A common characteristic of acyl-homoserine lactone quorum sensing is that signal production is positively autoregulated. We have examined the role of positive signal autoregulation inPseudomonas aeruginosa. We compared population responses and individual cell responses in populations of wild-typeP. aeruginosato responses in a strain with the signal synthase gene controlled by an arabinose-inducible promoter so that signal was produced at a constant rate per cell regardless of cell population density. At a population level, responses of the wild type and the engineered strain were indistinguishable, but the responses of individual cells in a population of the wild type showed greater synchrony than the responses of the engineered strain. Although sufficient signal is required to activate expression of quorum-sensing-regulated genes, it is not sufficient for activation of certain genes, the late genes, and their expression is delayed until other conditions are met. We found that late gene responses were reduced in the engineered strain. We conclude that positive signal autoregulation is not a required element in acyl-homoserine lactone quorum sensing, but it functions to enhance synchrony of the responses of individuals in a population. Synchrony might be advantageous in some situations, whereas a less coordinated quorum-sensing response might allow bet hedging and be advantageous in other situations.IMPORTANCEThere are many quorum-sensing systems that involve a transcriptional activator, which responds to an acyl-homoserine lactone signal. In all of the examples studied, the gene coding for signal production is positively autoregulated by the signal, and it has even been described as essential for a quorum-sensing response. We have used the opportunistic pathogenPseudomonas aeruginosaas a model to show that positive autoregulation is not required for a robust quorum-sensing response. We also show that positive autoregulation of signal production enhances the synchrony of the response. This information enhances our general understanding of the biological significance of how acyl-homoserine lactone quorum-sensing circuits are arranged.


2007 ◽  
Vol 189 (13) ◽  
pp. 4969-4972 ◽  
Author(s):  
Masanori Toyofuku ◽  
Nobuhiko Nomura ◽  
Tatsuya Fujii ◽  
Naoki Takaya ◽  
Hideaki Maseda ◽  
...  

ABSTRACT Anaerobic growth of Pseudomonas aeruginosa PAO1 was affected by quorum sensing. Deletion of genes that produce N-acyl-l-homoserine lactone signals resulted in an increase in denitrification activity, which was repressed by exogenous signal molecules. The effect of the las quorum-sensing system was dependent on the rhl quorum-sensing system in regulating denitrification.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
O. Lidor ◽  
A. Al-Quntar ◽  
E. C. Pesci ◽  
D. Steinberg

Abstract Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Fengming Ding ◽  
Ken-Ichi Oinuma ◽  
Nicole E. Smalley ◽  
Amy L. Schaefer ◽  
Omar Hamwy ◽  
...  

ABSTRACTPseudomonas aeruginosauses two acyl-homoserine lactone signals and two quorum sensing (QS) transcription factors, LasR and RhlR, to activate dozens of genes. LasR responds toN-3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and RhlR toN-butanoyl-homoserine lactone (C4-HSL). There is a thirdP. aeruginosaacyl-homoserine-lactone-responsive transcription factor, QscR, which acts to dampen or delay activation of genes by LasR and RhlR by an unknown mechanism. To better understand the role of QscR inP. aeruginosaQS, we performed a chromatin immunoprecipitation analysis, which showed this transcription factor bound the promoter of only a single operon of three genes linked toqscR, PA1895 to PA1897. Other genes that appear to be regulated by QscR in transcriptome studies were not direct targets of QscR. Deletion of PA1897 recapitulates the early QS activation phenotype of a QscR-null mutant, and the phenotype of a QscR-null mutant was complemented by PA1895-1897 but not by PA1897 alone. We conclude that QscR acts to modulate quorum sensing through regulation of a single operon, apparently raising the QS threshold of the population and providing a “brake” on QS autoinduction.IMPORTANCEQuorum sensing, a cell-cell communication system, is broadly distributed among bacteria and is commonly used to regulate the production of shared products. An important consequence of quorum sensing is a delay in production of certain products until the population density is high. The bacteriumPseudomonas aeruginosahas a particularly complicated quorum sensing system involving multiple signals and receptors. One of these receptors, QscR, downregulates gene expression, unlike the other receptors inP. aeruginosa. QscR does so by inducing the expression of a single operon whose function provides an element of resistance to a population reaching a quorum. This finding has importance for design of quorum sensing inhibitory strategies and can also inform design of synthetic biological circuits that use quorum sensing receptors to regulate gene expression.


Sign in / Sign up

Export Citation Format

Share Document