scholarly journals Quorum Sensing Regulates Denitrification in Pseudomonas aeruginosa PAO1

2007 ◽  
Vol 189 (13) ◽  
pp. 4969-4972 ◽  
Author(s):  
Masanori Toyofuku ◽  
Nobuhiko Nomura ◽  
Tatsuya Fujii ◽  
Naoki Takaya ◽  
Hideaki Maseda ◽  
...  

ABSTRACT Anaerobic growth of Pseudomonas aeruginosa PAO1 was affected by quorum sensing. Deletion of genes that produce N-acyl-l-homoserine lactone signals resulted in an increase in denitrification activity, which was repressed by exogenous signal molecules. The effect of the las quorum-sensing system was dependent on the rhl quorum-sensing system in regulating denitrification.

2000 ◽  
Vol 182 (10) ◽  
pp. 2702-2708 ◽  
Author(s):  
Susan L. McKnight ◽  
Barbara H. Iglewski ◽  
Everett C. Pesci

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa uses intercellular signals to control the density-dependent expression of many virulence factors. The las and rhlquorum-sensing systems function, respectively, through the autoinducersN-(3-oxododecanoyl)-l-homoserine lactone andN-butyryl-l-homoserine lactone (C4-HSL), which are known to positively regulate the transcription of the elastase-encoding gene, lasB. Recently, we reported that a second type of intercellular signal is involved in lasB induction. This signal was identified as 2-heptyl-3-hydroxy-4-quinolone and designated thePseudomonas quinolone signal (PQS). PQS was determined to be part of the quorum-sensing hierarchy since its production and bioactivity depended on the las and rhlquorum-sensing systems, respectively. In order to define the role of PQS in the P. aeruginosa quorum-sensing cascade,lacZ gene fusions were used to determine the effect of PQS on the transcription of the quorum-sensing system geneslasR, lasI, rhlR, andrhlI. We found that in P. aeruginosa, PQS caused a major induction of rhlI′-lacZ and had lesser effects on the transcription of lasR′-lacZ andrhlR′-lacZ. We also observed that the transcription of bothrhlI′-lacZ and lasB′-lacZ was cooperatively effected by C4-HSL and PQS. Additionally, we present data indicating that PQS was not produced maximally until cultures reached the late stationary phase of growth. Taken together, our results imply that PQS acts as a link between the las and rhlquorum-sensing systems and that this signal is not involved in sensing cell density.


2003 ◽  
Vol 69 (7) ◽  
pp. 3901-3910 ◽  
Author(s):  
Kathrin Riedel ◽  
Daniela Talker-Huiber ◽  
Michael Givskov ◽  
Helmut Schwab ◽  
Leo Eberl

ABSTRACT Serratia liquefaciens MG1 employs the swr quorum-sensing system to control various functions, including production of extracellular enzymes and swarming motility. Here we report the sequencing of the swr flanking DNA regions. We identified a gene upstream of swrR and transcribed in the same direction, designated estA, which encodes an esterase that belongs to family II of lipolytic enzymes. EstA was heterologously expressed in Escherichia coli, and the substrate specificity of the enzyme was determined in crude extracts. With the aid of zymograms visualizing EstA on polyacrylamide gels and by the analysis of a transcriptional fusion of the estA promoter to the promoterless luxAB genes, we showed that expression of the esterase is not regulated by the swr quorum-sensing system. An estA mutant was generated and was found to exhibit growth defects on minimal medium containing Tween 20 or Tween 80 as the sole carbon source. Moreover, we show that the mutant produces greatly reduced amounts of N-acyl-homoserine lactone (AHL) signal molecules on Tween-containing medium compared with the wild type, suggesting that under certain growth conditions EstA may be important for providing the cell with precursors required for AHL biosynthesis.


2005 ◽  
Vol 187 (13) ◽  
pp. 4372-4380 ◽  
Author(s):  
Dana S. Wade ◽  
M. Worth Calfee ◽  
Edson R. Rocha ◽  
Elizabeth A. Ling ◽  
Elana Engstrom ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rhl system is composed of RhlR and the signal N-butyryl homoserine lactone. A third intercellular signal, the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone), also regulates numerous virulence factors. PQS synthesis requires the expression of multiple operons, one of which is pqsABCDE. Previous experiments showed that the transcription of this operon, and therefore PQS production, is negatively regulated by the rhl quorum-sensing system and positively regulated by the las quorum-sensing system and PqsR (also known as MvfR), a LysR-type transcriptional regulator protein. With the use of DNA mobility shift assays and β-galactosidase reporter fusions, we have studied the regulation of pqsR and its relationship to pqsA, lasR, and rhlR. We show that PqsR binds the promoter of pqsA and that this binding increases dramatically in the presence of PQS, implying that PQS acts as a coinducer for PqsR. We have also mapped the transcriptional start site for pqsR and found that the transcription of pqsR is positively regulated by lasR and negatively regulated by rhlR. These results suggest that a regulatory chain occurs where pqsR is under the control of LasR and RhlR and where PqsR in turn controls pqsABCDE, which is required for the production of PQS.


2020 ◽  
Vol 37 (1) ◽  
pp. 29-36
Author(s):  
Nurdan Filik ◽  
Ayşegül Kubilay

Quorum Sensing is a system that produces critical virulence factors, virulent get bacteria and manages the disease as a result, and when they realize that the bacteria reach the majority they want by enabling them to communicate with the signal molecules themselves. In this study, Quorum Sensing system of Aeromonas hydrophila (2 strains) which is the causative agent of fish infection Motile Aeromonas Septicemia (MAS) disease was studied. In the strains, primarily the production of N-butanoyl-L-homoserine lactone (BHL) and N-(3-octododecanoyl)-L-homoserine lactone (OdDHL) signaling molecules was investigated via Chromobacterium violaceum CV026 and Agrobacterium tumafeciens NT1 biosensor strains. A. hydrophila produced BHL signaling molecule in assay committed using C. violaceum CV026 strain, producing OdDHL signaling molecule in assay committed using A. tumefaciens NT1 strain. A. hydrophila was investigated as phenotypically by the detection of BHL and OdDHL signaling molecules and in the presence of virulence factors controlled by quorum sensing system such as ramnolipid, elastase, protease, amylase, hemolysis production dependent on these molecules. The ramnolipid, protease, amylase and hemolysis activities of A. hydrophila strains were found to be positive. A. hydrophila has less elastase activity than Pseudomonas aeruginosa PAO1 control strain. Research has emphasizing A. hydrophila strains are within a population and that they have a of quorum sensing system, shown that they act collectively that determined they produces dangerous virulence factors that cause disease in fish.


2007 ◽  
Vol 189 (21) ◽  
pp. 7752-7764 ◽  
Author(s):  
Lisa A. Morici ◽  
Alexander J. Carterson ◽  
Victoria E. Wagner ◽  
Anders Frisk ◽  
Jill R. Schurr ◽  
...  

ABSTRACT AlgR controls numerous virulence factors in Pseudomonas aeruginosa, including alginate, hydrogen cyanide production, and type IV pilus-mediated twitching motility. In this study, the role of AlgR in biofilms was examined in continuous-flow and static biofilm assays. Strain PSL317 (ΔalgR) produced one-third the biofilm biomass of wild-type strain PAO1. Complementation with algR, but not fimTU-pilVWXY1Y2E, restored PSL317 to the wild-type biofilm phenotype. Comparisons of the transcriptional profiles of biofilm-grown PAO1 and PSL317 revealed that a number of quorum-sensing genes were upregulated in the algR deletion strain. Measurement of rhlA::lacZ and rhlI::lacZ promoter fusions confirmed the transcriptional profiling data when PSL317 was grown as a biofilm, but not planktonically. Increased amounts of rhamnolipids and N-butyryl homoserine lactone were detected in the biofilm effluent but not the planktonic supernatants of the algR mutant. Additionally, AlgR specifically bound to the rhlA and rhlI promoters in mobility shift assays. Moreover, PAO1 containing a chromosomal mutated AlgR binding site in its rhlI promoter formed biofilms and produced increased amounts of rhamnolipids similarly to the algR deletion strain. These observations indicate that AlgR specifically represses the Rhl quorum-sensing system during biofilm growth and that such repression is necessary for normal biofilm development. These data also suggest that AlgR may control transcription in a contact-dependent or biofilm-specific manner.


2006 ◽  
Vol 4 (2) ◽  
pp. 45-54
Author(s):  
UMI LESTARI ◽  
ARTINI PANGASTUTI ◽  
ARI SUSILOWATI

Conventional treatment of infectious diseases is based on compounds that kill or inhibit the growth of bacteria. A major concern with this approach is the frequent development of resistance to antimicrobial compounds. The discovery of communication (quorum sensing system) regulating bacterial virulence opens up ways to control certain bacterial infectious without interfering the growth. The fish pathogen Aeromonas hydrophila produces quorum sensing signal, NButanoyl-L-Homoserine Lactone (C4-HSL). C4-HSL regulates exoprotease synthesis, a virulence factor of A. hydrophila. Expression of exoprotease can be blocked by using quorum sensing inhibitor. The purpose of this study was to investigate the inhibiting effect of Curcuma xanthorrhiza (Roxb.) extract to exoprotease production of A. hydrophila. Extraction was conducted by using n-hexane, ethyl acetate and ethanol. The qualitative exoprotease assay result showed that n-hexane extract of C. xanthorrhiza had not effect on growth and exoprotease production of A. hydrophila. Meanwhile, 4% of ethyl acetate and ethanol extract of C. xanthorrhiza can inhibit exoprotease production without affecting A. hydrophilla growth. The quantitative exoprotease assay result showed that 4% of ethyl acetate and ethanol extract can inhibit the exoprotease production by 93,9% and 95,6%. The growth of A. hydrophila was not affected by this extract.


2003 ◽  
Vol 69 (3) ◽  
pp. 1739-1747 ◽  
Author(s):  
Claudio Aguilar ◽  
Iris Bertani ◽  
Vittorio Venturi

ABSTRACT Bacterial strains belonging to Burkholderia cepacia can be human opportunistic pathogens, plant pathogens, and plant growth promoting and have remarkable catabolic activity. B. cepacia consists of several genomovars comprising what is now known as the B. cepacia complex. Here we report the quorum-sensing system of a genomovar I onion rot type strain ATCC 25416. Quorum sensing is a cell-density-dependent regulatory response which involves the production of N-acyl homoserine lactone (HSL) signal molecules. The cep locus has been inactivated in the chromosome, and it has been shown that CepI is responsible for the biosynthesis of an N-hexanoyl HSL (C6-HSL) and an N-octanoyl HSL (C8-HSL) and that the cep locus regulates protease production as well as onion pathogenicity via the expression of a secreted polygalacturonase. A cep-lacZ-based sensor plasmid has been constructed and used to demonstrate that CepR responded to C6-HSL with only 15% of the molar efficiency of C8-HSL, that a cepR knockout mutant synthesized 70% less HSLs, and that CepR responded best towards long-chain HSLs. In addition, we also report the cloning and characterization of the stationary-phase sigma factor gene rpoS of B. cepacia ATCC 25416. It was established that quorum sensing in B. cepacia has a negative effect on rpoS expression as determined by using an rpoS-lacZ transcriptional fusion; on the other hand, rpoS-null mutants displayed no difference in the accumulation of HSL signal molecules.


Sign in / Sign up

Export Citation Format

Share Document