Faculty Opinions recommendation of A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression.

Author(s):  
Casey Bergman
Nature ◽  
2005 ◽  
Vol 438 (7065) ◽  
pp. 220-223 ◽  
Author(s):  
Scott A. Rifkin ◽  
David Houle ◽  
Junhyong Kim ◽  
Kevin P. White

2020 ◽  
Vol 12 (8) ◽  
pp. 1277-1301
Author(s):  
Mark J Nolte ◽  
Peicheng Jing ◽  
Colin N Dewey ◽  
Bret A Payseur

Abstract Island populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver. Between 4,000 and 8,800 genes were significantly differentially expressed across the evaluated organs, representing between 20% and 50% of detected transcripts, with 20% or more of differentially expressed transcripts in each organ exhibiting expression fold changes of at least 2×. A minimum of 73 candidate genes for extreme size evolution, including Irs1 and Lrp1, were identified by considering differential expression jointly with other data sets: 1) genomic positions of published quantitative trait loci for body weight and growth rate, 2) whole-genome sequencing of 16 wild-caught Gough Island mice that revealed fixed single-nucleotide differences between the strains, and 3) publicly available tissue-specific regulatory elements. Additionally, patterns of differential expression across three time points in the liver revealed that Arid5b potentially regulates hundreds of genes. Functional enrichment analyses pointed to cell cycling, mitochondrial function, signaling pathways, inflammatory response, and nutrient metabolism as potential causes of weight accumulation in Gough Island mice. Collectively, our results indicate that extensive gene regulatory evolution in metabolic organs accompanied the rapid evolution of gigantism during the short time house mice have inhabited Gough Island.


2017 ◽  
Author(s):  
Fabien C. Lamaze ◽  
Aurelien Chateigner ◽  
Hilary A. Edgington ◽  
Marie-Julie Fave ◽  
Armande Ang Houle ◽  
...  

AbstractSomatic mutations accumulate in non-coding regions of the genome during tumorigenesis, but their functional characterization presents a challenge. Somatic non-coding mutations rarely overlap among patients, which necessitates large sample sizes to detect associations. We analysed somatic mutations called from whole-genome sequencing (WGS) and RNA sequencing (RNAseq) from 3000 tumors across the Pan-Cancer Analysis of Whole Genomes to identify and functionally characterize mutation accumulation and its impact on gene dysregulation in cancer. We identified 1.5 million motif disruption domains (MDDs) across 40 cancer types, which we characterized as pan-cancer targets for recurrent mutation accumulation. These MDDs deregulate gene expression in cancer-specific and pan-cancer patterns by disrupting transcription factor binding sites in regulatory and insulator elements. Disruption is most recurrent across individuals at MDDs in conserved open chromatin, revealing potential drivers. This accumulation of somatic variants targeting regulatory and structural elements in MDDs generates gene expression dysregulation during tumorigenesis.


2021 ◽  
Author(s):  
Henry Scheffer ◽  
Jeremy Coate ◽  
Eddie K. H. Ho ◽  
Sarah Schaack

AbstractUnderstanding the genetic architecture of the stress response and its ability to evolve in response to different stressors requires an integrative approach. Here we quantify gene expression changes in response to two stressors associated with global climate change and habitat loss—heat shock and mutation accumulation. We measure expression levels for two Heat Shock Proteins (HSP90 and HSP60)—members of an important family of conserved molecular chaperones that have been shown to play numerous roles in the cell. While HSP90 assists with protein folding, stabilization, and degradation throughout the cell, HSP60 primarily localizes to the mitochondria and mediates de novo folding and stress-induced refolding of proteins. We perform these assays in Daphnia magna originally collected from multiple genotypes and populations along a latitudinal gradient, which differ in their annual mean, maximum, and range of temperatures. We find significant differences in overall expression between loci (10-fold), in response to thermal stress (~6x increase) and with mutation accumulation (~4x increase). Importantly, stressors interact synergistically to increase gene expression levels when more than one is applied (increasing, on average, >20x). While there is no evidence for differences among the three populations assayed, individual genotypes vary considerably in HSP90 expression. Overall, our results support previous proposals that HSP90 may act as an important buffer against not only heat, but also mutation, and expands this hypothesis to include another member of the gene family acting in a different domain of the cell.


2019 ◽  
Author(s):  
Fabrice Besnard ◽  
Joao Picao-Osorio ◽  
Clément Dubois ◽  
Marie-Anne Félix

ABSTRACTAn evolutionary trend, the rapid evolution of a trait in a group of organisms, can in some cases be explained by the mutational variance, the propensity of a phenotype to change under spontaneous mutation. However, the causes of high mutational variance are still elusive. For some morphological traits, fast evolution was shown to depend on the high mutation rate of one or few underlying loci with short tandem repeats. Here, we investigate the case of the fastest evolving cell fate among vulva precursor cells in Caenorhabditis nematodes, that of the cell called ‘P3.p’. For this, we combine mutation accumulation lines, whole-genome sequencing, genetic linkage analysis of the phenotype in recombinant lines, and candidate testing through mutant and CRISPR genome editing to identify causal mutations and the corresponding loci underlying the high mutational variance of P3.p. We identify and validate molecular lesions responsible for changes in this cell’s phenotype during a mutation accumulation experiment. We find that these loci do not present any characteristics of a high mutation rate, are scattered across the genome and belong to distinct biological pathways. Our data instead indicate that a broad mutational target size is the cause of the high mutational variance and of the corresponding evolutionary trend.


Sign in / Sign up

Export Citation Format

Share Document